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Abstract

Current theories suggest that causal learning is based on
covariation information.  However, information about the
presence/absence of events (particularly causes) is frequently
unavailable, rendering them unobserved.  The current paper
presents a new model of causal learning, BUCKLE
(Bidirectional Unobserved Cause LEarning), which extends
existing models of causal learning by dynamically inferring
information about unobserved causes.  During the course of
causal learning, BUCKLE continually computes the
probability that an unobserved cause is present on each
occasion and uses the results of these inferences to adjust the
strengths of the unobserved, as well as observed, causes.
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Introduction
Current models of causal induction assume that the input

available to reasoners comes in the form of covariation; how
the causes vary with their effects.  Thus, a learner observes
whether the presence or absence of a causal candidate is
followed by the presence or absence of an effect, and
translates these observations into beliefs about causal
relations.

Yet, in the real world, covariation is often not available.
For example, acquiring information about the
presence/absence of causes sometimes requires special
methods (e.g., genetic influences on cancer).  Perhaps more
commonly, causes are unobserved simply because learners
cannot possibly consider all alternative causes of a
particular event.  For instance, we do not know all possible
causes for gender discrepancy in science. Thus, lacking
information about the presence/absence of causes seems to
be the rule rather than the exception. This paper presents a
new model of causal learning, BUCKLE, which attempts to
capture how people learn causal relations when information
about causes is missing.

BUCKLE
BUCKLE (Bidirectional Unobserved Cause LEarning)

assumes that the learning environment always includes an
unobserved cause and learns by performing two steps during
each trial.  The first step is to compute the probability that
the unobserved cause is present.  The second step is to
adjust the strengths of each cause-effect relationship using
an error-correction algorithm.

To compute the probability of the unobserved cause (u) in
a situation with one observed cause (o) and one effect (e),
BUCKLE applies Bayes theorem to the current beliefs about
the strength of o and u (qo and qu respectively) and the prior
belief about the probability of u being present (i.e., P(u)
with we will always assume to be .5).  The following
equations are for cases when qo and qu are believed to be
generative in a current trial (see Luhmann & Ahn, 2006, for
equations for other cases):

€ 

P(u |o = 0,e = 0) =
P(u)• (1- qu)

1- P(u)[ ] + P(u)• (1- qu)[ ]
(1)

€ 

P(u |o = 0,e =1) =
P(u)•qu
P(u)•qu

=1 (2)

€ 

P(u |o =1,e = 0) =
(1− qo)•P(u)• (1- qu)

(1− qo)• 1- P(u)[ ]{ } + (1− qo)•P(u)• (1- qu)[ ]
(3)

€ 

P(u |o =1,e =1) =
P(u)• qo + qu − qo •qu( )[ ]

qo • 1− P(u)[ ]{ } + P(u)• qo + qu − qo •qu( )[ ]{ }
(4)

In words, Equation 1, for instance, shows the probability
that u is present when o and e are absent. The denominator
is the probability of e being present given that o is absent,
which occurs when either u is absent, or u  is present but
fails to cause e .  The numerator of Equation 1 is the
probability of the latter occurring (i.e., u being present).
Once the probability of u is computed, the unobserved cause
is treated just like an observed cause except that it is present
with some probability.

These equations allow BUCKLE to make several
predictions.  For example, the probability of u should vary
as a function of trial type (i.e., whether o and e are present
or absent).  Also, note that Equation 2 is special.  This
equation suggests that people should believe that u present
with a certainty (i.e., P(u)

€ 

≈1), when o  is absent but e is
present (i.e., what Luhmann & Ahn, 2003 call unexplained
effects), because o and u are the only possible causes.

BUCKLE’s second step is to use the observed and
inferred information to adjust the strength of each causal
relationship. BUCKLE learns via an error-correction
algorithm.  Information about the state of the causes (i.e., o
and u) is first used to predict how likely the effect is given
BUCKLE’s current causal beliefs (i.e., qo and q o).  This



prediction is then compared with the actual
presence/absence of the effect.  The difference between the
predicted and actual states of the effect (the prediction error)
forms the basis of learning.  BUCKLE predicts the effect
according to equation 5:

€ 

epredicted = P(e) = o•qo( ) + u•qu( ) − o•qo( ) • u•qu( )[ ]  (5)

In this expression, o=1 or 0 (when the observed cause is
present or absent, respectively) and u=P(u | o , e). This
expression (as well as Equations 1-4) assumes that causes
combine in the manner of a noisy-OR gate (e.g., Cheng,
1997; Danks, Tenenbaum, & Griffiths, 2003; Griffiths &
Tenenbaum, 2005).

Based on the prediction error, the strength of each cause
is updated separately:

€ 

Δqo =αoβ(e − epredicted )  (6)

€ 

Δqu =αuβ(e − epredicted )  (7)

The quantities α and β represent learning rates associated
with the causes and effects, respectively.  A value of 0.5
will be used for β.  When the observed cause is present,
αo=αo-present where α o-present will be treated as a free
parameter and allowed to vary between zero and one.  When
the observed cause is absent, α o=αabsent=0.0.  For the
unobserved cause, Equation 8 is used to compute a value of
αu to take into account the fact that the unobserved cause is
only present with some probability.

€ 

αu = P(u)• (αu− present −αabsent )[ ] +αabsent  (8)

When P(u)=0, this equation results in αu=0; when P(u)=1,
αu=αu-present, just as for the observed cause.  For values of
P (u ) between 0 and 1, α u increases linearly and in
proportion to the value of P(u).  The variable αu-present will
be treated as a second free parameter and allowed to vary
between zero and one.

BUCKLE makes several novel predictions about the
causal strength of unobserved causes.  For example, as
explained above, unexplained effects should lead to the
belief that u is present with a certainty in the presence of e.
Thus, unexplained effects should act to greatly increase qu

(because αu will also be maximal, see Equation 8).  Indeed,
Luhmann and Ahn (2003) demonstrated that unobserved
cause judgments were heavily influenced by the occurrence
of unexplained effects.

BUCKLE also makes predictions about the inferred
probability of u.  For example, probability judgments should
vary systematically depending on the presence/absence of o
and u, as illustrated in Equations 1-4.  Furthermore,
judgments about the presnce/absence of u should be related
to qu.  For example, BUCKLE predicts that positive values
of q u should be accompanied by beliefs about positive

covariation between u and e (i.e., P(u|e=1) - P(u|e=0) > 0).
Additionally, beliefs about the occurrence of the unobserved
cause should be correlated with subsequent causal strength
judgments.  These predictions will be further illustrated by
using BUCKLE to simulate the experiments below.

Experiment 1
To test BUCKLE’s predictions, we used a learning setting

with one effect, one observed cause, and one unobserved
cause whose state (present vs. absent) was unknown to
participants (see Figure 1).  Experiment 1 examines how
well BUCKLE accounts for (1) people’s causal strength
judgments, (2) people’s probability judgments of the
unobserved cause, and (3) the relationship between these
two judgments.

Method
Twenty-four Vanderbilt University undergraduates

participated in Experiment 1. Stimuli consisted of novel
electrical systems.  Each system contained one button whose
state (pressed or not) was observable, one button whose
state was unobservable and a single light.  The unobserved
button was marked with a large question mark to denote the
lack of presence/absence information (see Figure 1).
Participants were told that it was their job to determine how
the systems worked and that they would be asked to judge
the extent to which each button caused the light to turn on.

Figure 2 illustrates the contingency between the observed
cause and the effect for each of the four conditions.  The
Zero condition contained both 

€ 

OE  and 

€ 

OE  observations
with the contingency between o and e being zero (ΔP=0).
The Perfect condition contained neither 

€ 

OE  nor 

€ 

OE
observations (ΔP=1).  The remaining two conditions each
constituted moderately strong relationships (ΔP=0.5).  The

Figure 1 – Example stimuli.  The unobserved cause is
denoted by the large “?”.
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Figure 2 – The four contingencies used in Experiment 1 and 2.
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Unnecessary condition included 

€ 

OE  observations (i.e.,
unexplained effects), which render the observed cause
partially unnecessary but completely sufficient. The
Insufficient condition included 

€ 

OE  observations, which
render the observed cause partially insufficient but
completely necessary.

Each participant saw all four conditions separately in a
counterbalanced order.  For a given condition, participants
received the included observations in a pseudo-random
order.  On each trial, participants were presented with
information about the presence/absence of the observed
cause and the effect (e.g., Figure 1).  After receiving this
information, participants were immediately asked to judge
how likely the unobserved cause was to be present on that
occasion.  This judgment was made on a scale of 1 (“Not at
all likely”) to 9 (“Definitely likely”).  Once this judgment
was made, the next trial began.  After all the observations in
the condition were presented, participants were asked to
judge the causal strength of the observed and unobserved
causes.

Results
Causal Strength Judgments. Figure 3 shows

participants’ mean causal strength judgments.  To examine
how causal strength judgments varied across the four
contingencies, we performed a 2 (

€ 

OEpresent/absent) X 2
(

€ 

OEpresent/absent) repeated measures ANOVA on causal
judgments of the unobserved causes.  This analysis revealed
a significant main effect of 

€ 

OE  information, F(1, 22) =
26.59, p<.0001, because participants gave much higher
ratings on conditions with 

€ 

OE  observations (M=72.60,
SD=28.77) than on conditions without 

€ 

OE  observations
(M=41.47, SD=35.69).  No other main effects or
interactions were significant.  Note that these results imply
that the strength of the unobserved cause is not simply
inversely proportional to that of the observed cause (e.g., in
the Insufficient condition) as one might expect given an
account that emphasizes discounting (e.g., Thagard, 2000).
These results also closely mirror those of Luhmann and Ahn
(2003) who found that observations of 

€ 

OE  exerted a
particularly strong influence on causal strength judgments.

We applied BUCKLE to the exact same set of
observations in the exact same order that participants
received them.  BUCKLE’s final causal strength estimates
accounted for 81% of the variance in participants’ causal
judgments (RMSD of 13.25).  Importantly, BUCKLE
accounts for the large influence of 

€ 

OE  observations on
judgments of the unobserved cause.

Probability Judgments.  Figure 4 shows, broken down
by condition and trial type, participants’ mean probability
judgments of the likelihood that u  is present in a trial.
Individual one-way repeated measures ANOVAs were
performed on each of the four conditions with trial type as
the independent factor.  The effect of trial type was
significant in three of the four conditions (all p’s < .05) and
marginally significant in the Perfect condition (F(1,23) =
3.67, p=.068).  Thus, as predicted by BUCKLE, participants
appear to be making varied, but systematic inferences about
the presence of the unobserved cause (cf. Rescorla &
Wagner, 1972).  Also, note that the unobserved cause was
judged to be most likely present during 

€ 

OE  observations
(unexplained effects) as predicted by BUCKLE’s (see
Equation 2).

To quantitatively evaluate the fit between participants’
estimates and BUCKLE’s predictions, we compared
participants’ average probability judgments for each trial
type (e.g., 

€ 

OE , 

€ 

OE ) in each condition with BUCKLE’s
estimates.  BUCKLE’s estimates provided a good fit,
accounting for a significant amount of variance in
participants’ judgments (R2=.86, RSMD=1.48).  These
results (collapsed across condition) are shown in Figure 5.

It is also interesting to note that participants’ probability
judgments imply a positive correlation between the presence
of the unobserved cause and the presence of the effect.  This
can be seen by looking at the marginal averages below each
matrix in Table 2; the unobserved cause was judged to be
more likely to occur when e was present than when e was
absent.  This finding makes sense given that participants’
causal strength judgments of the unobserved cause were
greater than zero in all four conditions.  Current theories of
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Figure 4 – Probability judgments from Experiment 1.  Marginal averages below each matrix illustrate that participants’
believe the unobserved cause to vary with the effect.€ 
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Figure 3 – Causal strength judgments from
Experiment 1.  Error bars illustrate standard error and
the diamonds illustrate BUCKLE’s estimates.
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causal learning, including BUCKLE, imply that positive
covariation should accompany positive causal judgments.

Taking this idea a step further, there should have been a
strong relationship between participants’ beliefs about the
occurrence and strength of the unobserved cause.  To
evaluate this prediction, we compared participants’
probability judgments from 

€ 

OE  trials and 

€ 

OE  trials (these
were the only trial types shared across the four conditions).
If participants believed the unobserved cause varied with the
effect, they should have judged the unobserved cause to be
more likely present on 

€ 

OE  trials and less likely on 

€ 

OE
trials.  If participants did not believe that the unobserved
cause covaried with the effect, they should have believed
that the probability of the unobserved cause was more
similar on these two trial types.

Each participant’s average probability judgment for 

€ 

OE
trials was subtracted from their average probability
judgment for OE trials separately for each condition.  This
composite score served as a measure of the degree to which
participants believed the unobserved cause to covary with
the effect on these trials.  Note that the composite for each
condition was computed using identical observations.
Nonetheless, the composite accounted for nearly all the
variance in participants’ average causal strength judgments
(R2=.96).

To test whether BUCKLE mirrored these beliefs, we
computed a composite score (as before) using BUCKLE’s
probability estimates during 

€ 

OE  and OE trials.  Just as for
participants’ judgments, BUCKLE’s composite scores
accounted for 99% of the variance in BUCKLE’s final
unobserved cause strength estimates.

Summary
The results of Experiment 1 illustrate several important

points.  First, participants were able to provide systematic
causal judgments of causes that were not observed.  Our
own model, BUCKLE, suggests that these judgments result

from a sophisticated learning process that replaces the
missing information inferentially.  Thus, the second finding
was that, as predicted by BUCKLE, learners make dynamic
inferences about the occurrence of unobserved causes.
Judgments about the probability of the unobserved cause
varied as a function of whether the observed cause and the
effect were present.  The third finding was that probability
judgments varied, even during identical observations, across
the different contingencies and did so systematically.
Causal strength judgments of the unobserved causes were
accompanied by predictable judgments about how the
unobserved cause occurred in the presence and absence of
the effect.

These findings suggest that people’s beliefs about the
occurrence of the unobserved cause are intimately related to
the strength of that cause.  Note that this is exactly what
happens with observed causes.  The perceived strength of an
observed cause is intimately related to its presence/absence.
The difference in the current situation is that participants
must infer the presence/absence of the cause on their own.
The fact that learning otherwise continues as normal is a
testament to the resilience of the responsible processes.

BUCKLE accounts for the relationship between
probability and strength judgments and suggests that the
probability judgments being made on a trial-by-trial basis
provide the basis for learning and subsequent causal
strength judgments. Thus, BUCKLE argues that the
perceived strength of the unobserved cause cannot be
separated from beliefs about the way in which the
unobserved cause occurs.  Experiment 2 further explores
this claim.

Experiment 2
One critical aspect of the learning process described by

BUCKLE is that causal strength estimates are updated in a
sequential manner as each observation is made.  This differs
from approaches that compute causal strength over all
available data once enough observations have been
accumulated (e.g., Cheng, 1997; White, 2002).  An
interesting consequence of this is that the order in which
observations are encountered should influence the final
causal strength estimates.  This is because the probability of
u being present depends on qu and qo, which, according to
BUCKLE, change over time.  Altered probability judgments
might then lead to altered causal strength judgments as we
saw in Experiment 1.

To test this possibility, we used the set of trials
summarized in Figure 6.  This set of trials was divided into
two blocks.  One of the blocks contained unexplained
effects (analogous to the Unnecessary condition) and the
other did not (analogous to the Insufficient condition).
These two blocks could be ordered in one of two ways; the
block containing unexplained effects could be presented
either first (early-unexplained-effects condition) or second
(late-unexplained-effects condition) as shown in Figure 6.
Note that, because the only manipulation was the order of
the two blocks, participants had always seen the same set of
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Figure 5 – Likelihood judgments for each trial
type collapsed across contingency.  Error bars
illustrate standard error and the diamonds
illustrate BUCKLE’s predictions (again collapsed
over contingency)
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observations by the end of the sequence.  Thus, any
differences between orders cannot be a result of the number
or type of trials.

BUCKLE predicts that the judged strength of the
unobserved cause will differ between the two orderings.
Consider the early-unexplained-effects condition.  During
the first block of this condition, the unexplained effects will
lead to the unobserved cause being perceived as strong (as
illustrated in Experiment 1).  When the second block
(without unexplained effects) is encountered, the strong
unobserved cause will be interpreted as covarying strongly
with the effect (also illustrated in Experiment 1).  For
instance, a learner would believe that the unobserved cause
would likely be present during OE trials but likely absent
during 

€ 

OE  trials.  These inferences should lead to further
increases in the strength of the unobserved cause.

In contrast, consider the late-unexplained-effects
condition in which the unexplained effects are encountered
at the end.  In this situation, at the end of the first half, the
unobserved cause will be perceived as weak (as illustrated
in Experiment 1).  Only once the unexplained effects in the
second block are encountered will the perceived strength of
the unobserved cause will begin to increase.  However,
compared to the early-unexplained-effects condition, there
are far fewer trials acting to increase the perceived strength
of the unobserved cause.  Thus, the unobserved cause will
be perceived as stronger when encountering unexplained
effects in the first block than when encountering them in the
second block.

Method
Fifty undergraduates from Vanderbilt University

participated for partial fulfillment of course credit.  The
stimulus materials were similar to Experiment 1.  The
statistical properties of the system are summarized by the
cell frequencies illustrated in Figure 6.

The sole manipulation in this experiment was the order in
which trials were presented to participants.  There were two
orderings used, each of which consisted of two blocks.  One
block contained 

€ 

OE  trials but not 

€ 

OE  trials.  The other
contained 

€ 

OE  trials but not 

€ 

OE  trials.  In the early-
unexplained-effects condition, participants first saw the
block containing 

€ 

OE  trials followed by the block containing

€ 

OE  trials.  In the late-unexplained-effects condition,
participants saw the two blocks in the reverse order.
Although there were two blocks, there was nothing noting
the change from one block to the other, and as far as
participants were concerned, they were experiencing a

continuous stream of observations.
 The procedure of Experiment 2 was the same as

Experiment 1 except that probability judgments were not
elicited.  After completing observations, participants were
asked to judge the causal strength of each cause.  Each
subject saw both orders instantiated with different color
buttons with the order of the two sequences counterbalanced
across participants.

Results
As Figure 7 illustrates, despite identical sets of

observations, the unobserved cause was judged to be
significantly stronger in the early-unexplained-effects
condition (M = 73.50, SD = 25.90) than in the late-
unexplained-effects condition (M = 61.66, SD = 27.79),
t(49)=2.89, p < .01.  Using the exact same set of
observations in the exact same order that participants
received them, BUCKLE’s estimate of the unobserved
cause’s strength was higher in the early-unexplained-effects
condition (qu=69.19) than in the late-unexplained-effects
condition (qu=64.28).

Discussion
The model proposed here, BUCKLE, learns about

unobserved causes using two steps.  First, BUCKLE infers
the probability of the unobserved cause using its current
beliefs.  Second, BUCKLE adjusts its beliefs about the
strength of causal relationships via error correction. Despite
its relative simplicity, BUCKLE appears to accurately
capture a significant variety of aspects of people’s causal
learning.

First, BUCKLE’s estimates of the causal strength of the
unobserved cause mirrored those of participants. Second,
Experiment 1 demonstrated that BUCKLE’s estimates of the
probability of the unobserved cause matched participants’
own judgments.  Currently, BUCKLE is the only model in
the field that can make such predictions. For instance, the
model proposed by Rescorla and Wagner (1972) also
acknowledges the existence of an unobserved cause.
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Figure 6 – The design of Experiment 2.  Two blocks of
trials were presented in two orders.
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However, because this cause is treated as a part of an
unchanging context, the Rescorla-Wagner model has no
way of accounting for dynamic changes in the probability of
an unobserved cause.

Third, and perhaps more interesting, was the relationship
we observed between participants’ judgments of the
occurrence of the unobserved cause and their subsequent
strength judgments of the unobserved cause.  This finding
reaffirms the idea that causal judgments are based on
covariation.  What is novel about this finding is that
participants were not given any covariation information
about the unobserved cause.  The covariation between the
unobserved cause and effect had to be generated by the
participants themselves.

Fourth, BUCKLE accounted for the order effect found in
Experiment 2. Such order effects pose problems to all
models that provide causal strength estimates only at the end
of learning (e.g., Cheng, 1997, White, 1992).

One potential criticism is that the current results may have
been obtained simply because participants were constantly
reminded of a possibility of unobserved cause during
learning (i.e., Figure 1). However, Luhmann and Ahn (2003,
Experiment 1) found that even when participants were
explicitly allowed to refuse judgment, they were still willing
to provide causal strength estimates for unobserved causes.
These results suggest that the inferences about unobserved
cause occur spontaneously and naturally. They also indicate
the importance of further investigating the role of inferences
on unobserved cause in explaining human causal learning.
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