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Dealing with alternative causes is necessary to avoid making inaccurate causal inferences from covaria-
tion data. However, information about alternative causes is frequently unavailable, rendering them
unobserved. The current article reviews the way in which current learning models deal, or could deal,
with unobserved causes. A new model of causal learning, BUCKLE (bidirectional unobserved cause
learning) extends existing models of causal learning by dynamically inferring information about unob-
served, alternative causes. During the course of causal learning, BUCKLE continually computes the
probability that an unobserved cause is present during a given observation and then uses the results of
these inferences to learn the causal strengths of the unobserved as well as observed causes. The current
results demonstrate that BUCKLE provides a better explanation of people’s causal learning than the
existing models.
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In this article, we explore how people learn about causes when
given incomplete information. Specifically, we discuss situations
in which causes are unobserved. Many existing models of causal
induction ignore unobserved causes (e.g., Anderson & Sheu, 1995;
Busemeyer, 1991; Cheng & Novick, 1992; Jenkins & Ward, 1965;
Schustack & Sternberg, 1981; White, 2002) or make simplistic
assumptions about unobserved causes (e.g., Rescorla & Wagner,
1972). In contrast, we argue that learners use a more sophisticated
strategy for dealing with unobserved causes. We present a new
model, BUCKLE (bidirectional unobserved cause learning), to
formalize our theory. Before presenting this model, we first dis-
cuss the need to deal with unobserved causes and previous at-
tempts to do so.

The Importance of Alternative Causes

Causal beliefs are generally assumed to result from experience in
the form of covariation: how the causes vary with their effects. The
covariation between a single cause and effect can be summarized in a
table like the one in Figure 1. Thus, a learner observes whether
presence or absence of a (possible) cause is followed by presence or
absence of the (possible) effect and translates these observations into
beliefs about the intervening causal relationship. Much work has been

dedicated to exploring how this translation is made (see, e.g., Shanks,
Holyoak, & Medin, 1996, for an extensive review).

Work over the last 25 years has revealed that the covariation-
to-causality translation is more complex than traditional theories
suggested. In particular, it seems clear that beliefs about one cause
critically depend on how learners deal with other, alternative
causes of that same effect (e.g., Cheng, Park, Yarlas, & Holyoak,
1996). For example, Spellman (1996) had participants learn about
two liquids (one red and one blue) and their influence on flowers’
blooming. When participants were asked about the influence of the
red liquid, their judgments were not simply based on how the red
liquid and blooming covaried. Instead, participants systematically
used observations in which the alternative cause (blue liquid) was
held constant (a strategy referred to as conditionalizing), just as
scientists control for potential confounding variables in experi-
mental design (see also Goodie, Williams, & Crooks, 2003; Wald-
mann & Hagmayer, 2001). Conditionalizing is advantageous be-
cause it often prevents wrongly attributing causal efficacy to a
noncause. For instance, upon observing that more men than
women are scientists, one should eliminate differences in social-
ization before concluding genetic differences as the cause (see also
Simpson’s paradox; Simpson, 1951).

Although conditionalizing may be useful, the strategy is often not
feasible because it requires alternative causes to be observed. Some-
times alternative causes are unobserved because they require special
instruments or methods to be observed (e.g., genetic influences on
cancer). More frequently, learners do not collect observations about
alternative causes simply because they are unable to consider all
possible alternative causes of a particular event. Thus, it seems that
learners must constantly deal with unobserved alternative causes.
Though all modern theories of causal learning incorporate some
mechanism for conditionalizing, very few attempt to actively deal
with unobserved alternative causes, as we illustrate next.

Mechanisms for Unobserved Cause Learning

In this section, we review how existing models of causal learn-
ing deal with unobserved causes. For purposes of comparison, we
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have segregated these existing models along two critical dimen-
sions (see Table 1). The first dimension, represented by the rows
of Table 1, captures the extent to which a model makes inferences
about unobserved alternative causes. Models can range from re-
maining entirely agnostic about strength of an unobserved alter-
native cause to making full inferences about it. The second dimen-
sion, represented by the columns of Table 1, represents whether
computations of causal strengths take place on each trial of obser-
vation (iterative) or only at the end of all observations (simulta-
neous).

To illustrate how models varying along these two dimensions
deal with unobserved alternative causes, we will consider a rela-
tively simple situation that includes one observed cause, one
unobserved cause, and a single effect, each taking on one of two
values (present or absent). See Figure 2 for an example trial and
Figure 3 for a sample covariation table for this situation.

!P

!P is a method of computing contingency. It does not include
any mechanism for dealing with unobserved causes and performs
its computation all at once at the end of all observations (see Table
1). !P is the probability of the effect occurring in the presence of
the observed cause minus the probability of the effect occurring in

the absence of the observed cause (e.g., [10 / (10 " 10)] – [10 /
(10 " 10)] # 0 for Figure 3).

Applying the same computation to an unobserved cause is
simply not possible because the probabilities required to compute
!P are unavailable for unobserved causes. One might notice that
if we assume that there is only one unobserved cause, then it must
be present when the effect occurs in the absence of the observed
cause (i.e., during the 10 occasions represented in the lower left
quadrant of Figure 3). Unfortunately, even with this insight, the
causal strength of the unobserved cause cannot be computed
because the presence/absence of the unobserved cause is uncon-
strained during the remaining 30 observations. At one extreme, the
presence of the unobserved cause could correlate perfectly with the
effect on the remaining 30 occasions (i.e., the unobserved cause
would be present in all 10 cases in which the effect and the
observed cause were present, and absent in all 20 cases in which
the effect was absent), resulting in !P # 1.0 – 0.0 # 1.0. At the
other extreme, the presence of the unobserved cause could nega-
tively correlate with the effect on the remaining 30 occasions (i.e.,
the unobserved cause would be present on all 20 occasions when
the effect was absent, and absent on 10 of the occasions when the
effect and the observed cause were present), resulting in !P # .5
– 1.0 # –0.5. Thus, !P cannot provide a unique estimate for the
causal strength of the unobserved cause.

Present Absent

Present A B

Absent C D

Cause

Effect

Figure 1. A contingency table summarizing the covariation between two
binary events. Each cell of the table represents one of the possible obser-
vations.

Table 1
Summary of Potential Unobserved Causal Learning Mechanisms

Operation

Unobserved cause behavior Simultaneous Iterative

Unknown unobserved cause behavior !P (Jenkins & Ward, 1965) Rescorla & Wagner (1972)
Power PC (Cheng, 1997) Danks et al. (2003) (assuming more than one
Probability of sufficiency (Pearl, 2000) unobserved cause)

Static unobserved causes Power PC (Cheng, 1997) Rescorla–Wagner
Probability of sufficiency (Pearl, 2000) (amended

with P (U # 0.5))
Danks et al. (2003) (assuming a single unobserved

cause)

Dynamic unobserved causes EM (Dempster et al., 1977) BUCKLE

Note. The rows describe how different models deal with unobserved causes. Those in the top row either ignore unobserved causes or are otherwise unable
to estimate the strength of any given unobserved cause. Models in the middle row are models that can produce unobserved cause estimates when assuming
that the unobserved cause occurs with some constant probability. Models in the bottom row allow unobserved causes to vary from trial to trial. The two
columns divide the models into those that perform a single computation at the end of the trial sequence (simultaneous) and those that perform computations
on every trial (iterative). EM # expectation maximization algorithm; BUCKLE # bidirectional unobserved cause learning.

Figure 2. A sample trial. The states of the gray button and the light are
observed on every trial. The white button is unobserved; information about
its state is unavailable on every trial.
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Power Models

The next approach we consider is embodied by a class of models
that includes the causal power theory of the probabilistic contrast
model, or the power PC theory (Cheng, 1997), and Pearl’s prob-
ability of sufficiency (Pearl, 2000). With sophisticated use of
probability theory and critical assumptions, these models attempt
to provide causal strength estimates, as opposed to mere covaria-
tion, such as !P. Thus, we refer to this class of models as power
models. The power models acknowledge the existence of unob-
served alternative causes but cannot infer their properties. The
power models, like !P, perform their computations in a single step
(see Table 1).

Take the power PC theory (Cheng, 1997) as an example. This
theory suggests that qO, the causal strength of the observed cause,
O, in a situation depicted in Figure 2 is equivalent to Equation 1.

qO !
!P

1 " P$U ! 1% ! qU
(1)

where P(U # 1) is the base rate of an unobserved cause, U, and qU

is the causal power of the unobserved cause.
The immediate problem with this equation is that the denominator

contains two unknowns: Both the strength and the base rate of the
unobserved cause are unavailable. To deal with this problem, the
power PC theory assumes that Equation 1 is used in situations in
which unobserved alternative causes occur independently of the ob-
served cause. Under this assumption, P(U # 1) ! qU becomes equiv-
alent to the probability of the effect given the presence of the observed
cause, which is an observable quantity, and the causal strength of the
observed cause can be computed (see Cheng, 1997, for the proof).
Thus, this assumption eliminates any need to make inferences about
strengths of unobserved alternative causes.

There are two remaining problems with this treatment in relation
to the current study. First, recent studies have demonstrated that
even when they are willing to make causal judgments, people do
not necessarily assume that unobserved alternative causes occur
independently of the observed cause (see Hagmayer & Waldmann,
2007; Luhmann, 2005). Experiment 3 in this article revisits this
issue. Second, even when alternative causes are independent, there
is no unique solution for the strength of the unobserved cause (qU)
because P(U # 1) is still unknown. This ambiguity prevents the
power PC theory (and probability of sufficiency; see Pearl, 2000)
from making firm predictions about the strength of unobserved

causes. In contrast, when Luhmann and Ahn (2003) presented
participants with a series of trials similar to the one shown in
Figure 2, all participants were willing to provide causal strength
judgments of an unobserved cause, even when explicitly given the
option not to do so. Because P(U # 1) was unknown to partici-
pants in this experiment, the power models would not be able to
produce unique estimates and thus cannot account for people’s
willingness to judge the unobserved cause (qU).

As we will show when reviewing other models, the problem
plaguing the power models is pervasive. The strength of unob-
served causes is underdetermined without additional information
about how or when the unobserved cause is present or absent.
Acknowledging this problem suggests one relatively simple solu-
tion for the power models to compute the strength of unobserved
causes and to potentially explain people’s willingness to provide
judgments. If learners made simplifying assumptions about P(U #
1) (e.g., P(U # 1) # .5, meaning unobserved causes are present on
about half of the trials), then there would be only one unknown to
be solved for: qU. Thus, by simply assuming that the unobserved
causes occur with some fixed probability, the power models are
now able to provide the strength estimates people are able to
provide.1 These amended power models occupy a new cell in
Table 1 to acknowledge the psychological assumptions about the
occurrence of unobserved causes that must be added (and tested).

To summarize, the power models cannot provide qU and thus
fail to account for the full range of learning behavior (e.g., Luh-
mann & Ahn, 2003). However, with a simple amendment of fixing
P(U # 1), they can estimate qU and thus have the potential to
explain people’s judgments. These models are thoroughly tested
below.

Rescorla–Wagner Model

The learning model described by Rescorla and Wagner (1972;
hereafter R-W) is a classic iterative learning model (and thus
occupies the right column in Table 1) that actually mirrors the
predictions of !P under many conditions (Cheng, 1997; Danks,
2003; Shanks, 1995). The model assigns each cause and each
effect a node in a simple network. According to R-W, learning
amounts to adjustments of strengths according to Equation 2.

!q ! &'$( " )q% (2)

In this equation, ( is an indicator of whether the effect is present
(( # 1 in our simulations) or absent (( # 0). The parameters & and
' are the saliency of the cause and the effect, respectively. We will
assume a value of .5 for ' and will fit the value of & using
procedures described below. The parenthetical quantity is the
amount of error. This error is computed as the difference between
the observed effect (() and the predicted value of the effect ()q;
the summed strengths of the causes present on that occasion). The
resulting quantity, !q, is then used to adjust the strength of each
cause present on that occasion. Causes that are absent never have
their strengths adjusted.

On its surface, R-W does not appear to deal with unobserved
causes at all. However, there is one algorithmic detail that may
allow R-W to produce unobserved cause judgments. R-W always

1 We thank Tom Griffiths for suggesting this strategy.

Present Absent

Present 10 10

Absent 10 10

Effect

Observed
Cause

Figure 3. A summary of 40 observations characterizing the situation
presented in Figure 2. The contingency table summarizes the covariation of
the observed cause and the effect. No such table can be fully constructed
for an unobserved cause.
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includes a single additional input node to represent the experimen-
tal context or background. This background is essentially the set of
all unobserved causes. For example, Shanks (1989) stated that
“occurrences of the [effect] in the absence of the target cause . . .
must be attributed to the background” (p. 27). Because the exper-
imental context is present on all trials, R-W assumes that this cue
is also constantly present and its strength is updated just as any
other cause. Now, the unobserved cause depicted in Figure 2, the
unobserved cause that participants are asked to judge, is certainly
part of the experimental context. However, there is no way to
extract the strength of any single unobserved cause from the
learned strength of the experimental context (a potentially infinite
set of such causes). This is why it is placed in the top row of Table
1. Thus, this aspect of R-W, though suggestive, does not actually
help it in explaining whether and how people make inferences
about unobserved causes (Luhmann & Ahn, 2003).

However, as with the power models, amendments can be made
that allow R-W to estimate the strength of the unobserved cause.
Namely, the strength of the experimental context can be used to
directly judge the single, unobserved, alternative cause. Concep-
tually, this assumption is equivalent to ignoring all aspects of the
context except the unobserved cause of interest, which, for human
participants, may not be that much of a stretch.2 This assumption
also predicts that the unobserved cause is treated as though it were
present on every trial (and thus occupies the middle row of Table
1). This brings the R-W model in line with the amended power
models; both operate with an unobserved cause occurring with a
fixed probability (.5 for the amended power models or 1 for R-W).

Power Variant of R-W

Whereas the original R-W model can be thought of as a trial-
by-trial, algorithmic variant of !P, Danks, Griffiths, and Tenen-
baum (2003) have described a learning process that computes
causal power (Cheng, 1997). Their proposal is highly similar to the
traditional R-W model in that it uses a trial-by-trial error-
correction algorithm and assumes that an unobserved cause is
constantly present and that its strength is adjusted just like ob-
served causes. There are two modifications that allow the power
variant of R-W to compute the causal power.

First, whereas R-W assumes that causal strengths combine ad-
ditively to produce their effects, the power variant of R-W assumes
that generative causes combine in the manner of a noisy-OR gate
and preventative causes combine in the manner of a noisy-AND-
NOT gate (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005;
Novick & Cheng, 2004; Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003). For example, if two generative causes (A and B)
were present on some occasion, R-W would simply add the two
strengths (i.e., P(E) # qA " qB) to predict the probability of the
effect occurring. Under the noisy-OR assumption, the effect occurs
to the extent that one or the other cause is sufficient to produce it
(illustrated in Equation 3).

P$E% ! qA # qB " $qA ! qB% (3)

Second, whereas R-W never adjusts the strength of causes that
are absent, the power variant of R-W adjusts the strength of all
causes on each occasion. Present causes are adjusted just as in
R-W. Strengths of absent causes are increased when the effect is
predicted to be present but is actually absent, and decreased when

the effect is predicted to be absent but is actually present. To
accomplish this, the value of & in Equation 2 is positive when the
cause is present (as it was in traditional R-W) and negative when
the cause is absent.

When it comes to explaining unobserved cause learning, the
power variant of R-W is in the same situation as traditional R-W.
If the constantly present alternative cause is treated as the set of all
unobserved, alternative causes, it is unable to produce strength
estimates of any single unobserved cause. However, if the con-
stantly present alternative cause is treated as representing the
single unobserved cause of interest, then it may be able to explain
participants’ judgments.

Expectation Maximization

The last models we consider make more sophisticated infer-
ences about unobserved causes. These models actually estimate
(rather than assume) the value of P(U # 1) using the available
data. Because the values of the observed variables change from
trial to trial, inferences about the unobserved cause also vary from
trial to trial (see the bottom row of Table 1).

A standard method to accomplish such learning in the field of
statistics is to apply the expectation maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977). The EM algorithm alternates
between computing the most likely parameter values and filling in
the missing data on the basis of the new parameter estimates.
These two steps are repeated until the estimates converge. Thus,
EM would attempt to simultaneously estimate the causal strengths
and the missing data (i.e., the value of U on every trial).

The EM algorithm was not proposed as a psychological model
of causal learning (though see Fried & Holyoak, 1984). We will
not provide detailed discussion, but it is worth noting that this
algorithm is unable to arrive at unique estimates of P(U # 1) and
qU. EM has been shown (Dempster et al., 1977) to converge on the
maximum likelihood estimate (MLE), which, in this case, is equiv-
alent to the power models (see Griffiths & Tenenbaum, 2005).
Given this equivalence, it is no surprise that there exist multiple
sets of parameter values that are equally consistent with the data
summarized in Figure 3. For example, the unobserved cause could
have a strength of 1 (i.e., completely sufficient to produce the
effect) but be present on only half of the trials—that is, P(U #
1) # .5—or it could have a strength of .5 and be present on all
trials—that is, P(U # 1) # 1. Though it is possible to use EM (or
MLE) to compute estimates for more specific quantities—for
example, P(U # 1|E) or the value of P(U # 1) for a particular
trial—doing so would only produce larger sets of equally likely
parameter estimates.

By surveying the entire data set at once, the EM algorithm (and
MLE) is forced to contemplate all possible combinations of pa-
rameter values. This method of operation allows it to definitely
find the most likely set of parameter values, but it also causes
increased ambiguity, as illustrated above. Our own model,
BUCKLE, uses the principles behind EM but learns in an iterative
manner. As we will show, BUCKLE is able to produce estimates

2 Indeed, in the current Experiment 1, we explicitly instructed partici-
pants that there was only a single alternative cause for the effect, so this
assumption was satisfied in that experiment.
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of both the strength and presence/absence of unobserved causes.
We discuss the similarities between EM and BUCKLE in the
General Discussion.

BUCKLE

As we illustrated above, no set of estimates—that is, qO, qU, and
P(U # 1)—uniquely describes the covariation between an ob-
served cause and its effect. To overcome this problem, BUCKLE
uses a strategy of alternating between estimating the missing
data—for example, P(U # 1)—and estimating the parameters of
interest (i.e., qO and qU, much like the EM algorithm described
above) with the added psychological constraint that data be pro-
cessed in an iterative manner. Specifically, we argue that learners
infer how likely the unobserved cause is to be present as each
observation is encountered and then proceed with learning as if the
presence/absence of the unobserved cause were available in the
input. Here, we first generally describe the model before present-
ing a formal description.

BUCKLE is a trial-by-trial learning model and operates using two
steps, each of which is performed as each observation is encountered.
Figure 4 provides a schematic of BUCKLE’s operation. BUCKLE
first computes the probability that the unobserved cause is present on
the current trial, removing the uncertainty about the occurrence of the
unobserved cause. BUCKLE computes the probability that the unob-
served cause is present on the basis of the strength of each cause and
the presence/absence of the observed causes and effect. The strengths
used are those computed on the previous trial. To illustrate this step,

suppose a learner, on the basis of previous trials, believes that an
observed cause is very weak. If this learner now observes a trial in
which both the observed cause and the effect are present, she would
infer the unobserved cause to be more likely present if she believes the
unobserved cause is strong rather than weak (see the next section for
formal algorithms).

Once this probability of the unobserved cause is determined,
BUCKLE then revises its estimates of the causal strengths of both
the observed and unobserved causes in the second step. This step
requires, among other things, information about the probability of
the unobserved cause being present on this occasion, which is
provided by the first step of that trial. The strength adjustment is
accomplished via an error-correction algorithm like that used by
the R-W variants described above. BUCKLE then uses the updated
causal strengths on the next trial when inferring how likely the
unobserved cause is to be present and updating each cause’s
strength. On each trial, these two steps repeat.

Thus, BUCKLE does not assume that the unobserved cause is
constantly present. However, it also avoids the difficulties associated
with determining both the occurrence and the strength of unobserved
causes. The critical difference is that, unlike the simultaneous models
(the left column in Table 1), BUCKLE does not attempt to compute
the value of these two quantities simultaneously. Instead, BUCKLE
alternates between (a) dealing with the occurrence of the unobserved
cause and (b) adjusting the strength of the unobserved cause. During
each computation to estimate one of these quantities, the value of the
other quantity is known and static.

Figure 4. A diagram illustrating the operation of the two steps of BUCKLE (bidirectional unobserved cause
learning). O represents a single observed cause, U represents a single unobserved cause, and E represents a single
effect.
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To summarize, the most critical aspect of BUCKLE is that it
infers how likely the unobserved cause is to be present as each
observation is encountered and that this likelihood estimate is used
in updating causal strengths of unobserved and observed causes.
BUCKLE’s process is highly similar to the generalized EM algo-
rithm described by Dempster et al. (1977), which is guaranteed to
converge on a locally optimal solution, except that BUCKLE adds
the psychological constraint that computations must be performed
on a single observation at a time in an iterative fashion (see the
General Discussion for more on the similarities between these
algorithms).

Formal Description of BUCKLE

The formal details of BUCKLE provided here are for the simple
case illustrated in Figure 2, which includes a single observed cause
(O), a single unobserved cause (U), and a single effect (E).3 Using
the conventional notation, 1 represents presence and 0 represents
absence (e.g., O # 1, E # 0 for the present observed cause and
absent effect). For the sake of brevity, we will often use the
conventional abbreviation in the text (e.g., OE! for an occasion on
which the observed cause is present and the effect is absent). The
strengths of O and U, specifically their causal sufficiency (just as
with the power models), will be represented by qO and qU, respec-
tively.

Step 1: Inference of unobserved cause. The first step taken by
BUCKLE is to infer how likely it is that the unobserved cause is
present in a given trial. To do this, the values of O and E are first
set according to the current states of the observed cause and effect
in the current observation (i.e., O # o, E # e). The probability that
the unobserved cause is present is then computed using Bayes’s
theorem.

P$U ! 1!O ! o,E ! e%

!
P$E ! e!O ! o,U ! 1% ! P$U ! 1!O ! o%"

u#[0,1]

P$E ! e!O ! o,U ! u% ! P$U ! u!O ! o%
(4)

We will assume that the prior probability of the unobserved cause
occurring is always .5—that is, P(U # 1|O # 1) # P(U # 1|O #
0) # .5 (see the General Discussion for more on this assumption).
This allows us to simplify Equation 4.4

P$U ! 1!O ! o,E ! e% !
P$E ! e!O ! o,U ! 1%"

u#[0,1]

P$E ! e!O ! o,U ! u%
(5)

To compute P(E # e | O # o, U # u), we need to specify how
causes combine to influence their effects. As in the power models,
we will assume that causes combine in the manner of a noisy-OR
gate when generative and a noisy-AND-NOT gate when preven-
tative (this can be changed depending on the specific situation; see
the General Discussion). Thus, when O and U are generative (i.e.,
qO, qU * 0), the effect occurs according to Equation 6.

P$E ! 1!O ! o,U ! u% ! $O ! qO% # $U ! qU%

" +$O ! qO% ! $U ! qU%, (6)

For example, if both O and U are present, Equation 6 becomes
P(E # 1!O # 1,U # 1) # qO " qU-qO ! qU. If O is present

and U is absent, Equation 6 becomes P(E # 1!O # 1,U #
0) # qO.

When U is preventative and O is generative (i.e., qU . 0, qO *
0), E occurs according to Equation 7.

P$E ! 1!O ! o, U ! u% ! O ! qO ! /+U ! $1 # qU%, # $1 " U)}

(7)

When U is generative and O is preventative (i.e., qU * 0, qO . 0),
E occurs according to Equation 8.

P$E ! 1!O ! o, U ! u% ! U ! qU ! /+O ! $1 # qO%, # +1 " O,0

(8)

When neither cause is generative, P(E # 1 | O # o, U # u) # 0.
Combining these individual expressions allows BUCKLE to

compute the probability of U. For example, imagine a trial on
which qO and qU are believed to be positive (i.e., O and U produce
rather than prevent their effects) and on which both the observed
cause and the effect occur (i.e., O # 1, E # 1). Because qO and qU

are both positive, BUCKLE uses Equation 6 to expand Equation 5,
which results in Equation 9.

P$U ! 1!E ! 1,O ! 1% !
qO # qU " qO ! qU

qO # $qO # qU " qO ! qU%
(9)

As another example, imagine that the effect is still present (i.e.,
E # 1) and O is still generative (i.e., qO * 0) and present on a
given trial (i.e., O # 1) but that U is now preventative (qU . 0).
BUCKLE would use Equation 7 to expand Equation 5, which
would result in Equation 10.

P$U ! 1!E ! 1,O ! 1% !
qO ! $1 # qU%

qO # +qO ! $1 # qU%,
(10)

Thus, despite the fact that the observation (i.e., O and E) is the
same as above, Equation 5 will be computed differently because
the current belief about U’s influence is different from the previous
example. The Appendix provides the computations for all eight
possible cases. BUCKLE decides which of these eight expressions
to use dynamically, according to the current values of O and E
(available from the input) and qU and qO (obtained from the
previous trial). Because BUCKLE determines the influence (gen-
erative vs. preventative) of each cause according to the input, it is
possible to begin a trial sequence with a positive value of qU and
end that same trial sequence with a negative value of qU. BUCKLE
would compute the probability of the unobserved cause using one
expression (e.g., Equation 9) on trials where qU was positive and
a different expression (e.g., Equation 10) on trials where qU was
negative.

3 Typical real-world situations include multiple observed causes. People
may acknowledge this fact, in which case BUCKLE could be modified to
accommodate additional unobserved causes. On the other hand, people
may lump all of the unobserved alternative causes into a single composite
cause (e.g., Cheng, 1997), in which case it would be more appropriate to
use the version described here. Regardless, different causal situations are
simply generalizations of what is described here.

4 See the Appendix for the complete derivation, including details about
how undefined quantities are handled.
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Step 2: Learning algorithm. The second step of BUCKLE is to
adjust the strength of each causal relationship (i.e., qU and qO), using,
among others, the inferred value of P(U # 1) obtained from Step 1.
To do so, BUCKLE uses an error-correction algorithm much like
R-W (with a few minor changes, noted below). BUCKLE first makes
a prediction about the occurrence of E based on the presence/absence
of O and U and the current estimates of their strengths. The discrep-
ancy between this prediction and the actual, observed occurrence of
the effect is used to adjust the strength estimates.

BUCKLE makes its prediction about the occurrence of the
effect as described above (e.g., Equation 3). We take BUCKLE’s
prediction about the occurrence of the effect to be equal to Equa-
tion 11.

Epredicted ! /P$E ! 1!O ! o,U ! 1% ! P$U ! 1!O ! o,E ! e%0

# /P$E ! 1!O ! o,U ! 0% ! +1 " P$U ! 1!O ! o,E ! e)]}

(11)

BUCKLE’s prediction,5 Epredicted, is then compared with the actual
value of E, and the difference (i.e., error) is used to adjust the
strength estimates, as in Equations 12 and 13.

!qO ! &O'$E " Epredicted% (12)

!qU ! &U'$E " Epredicted% (13)

The strength of each cause is updated separately. The quantities &
and ' represent learning rates associated with causes and effects,
respectively. A value of .5 will be used for ' (see Appendix Table
A1). When the observed cause is present, &O # &O-present, where
&O-present will be treated as a free parameter and allowed to vary
between 0 and 1. When the observed cause is absent, &O # 0. For
the unobserved cause, the value of & is computed using Equation
14, which takes into account the fact that the unobserved cause is
present only with some probability.

&U ! &U-present ! P$U ! 1!O ! o,E ! e% (14)

The variable &U-present will be treated as a second free parameter
and allowed to vary between 0 and 1. Equation 14 results in &U #
0 when P(U # 1 | O # o, E # e) # 0, and &U # &U-present when
P(U # 1 | O # o, E # e) # 1, just as for the observed cause. For
values of P(U # 1 | O # o, E # e) between 0 and 1, & increases
linearly and in proportion to the value of P(U # 1 | O # o,
E # e).

To review, BUCKLE completes two steps for each observation.
BUCKLE first infers how likely the unobserved cause is to be present
and then adjusts the causal strengths of all present causes. Beyond
these two steps, the particular algorithms behind each step of BUCK-
LE’s operation are interchangeable (see the section BUCKLE’s As-
sumptions in the General Discussion for more on this point).

Simulation of BUCKLE on Observed Cause Learning

Although BUCKLE’s innovation lies in unobserved cause learn-
ing, the first order of business is to ensure that BUCKLE can
replicate people’s judgments of observed causes. We selected
Experiment 3 of Buehner, Cheng, and Clifford (2003) for a test
case. Their participants received 10 different contingency condi-
tions, each consisting of 24 randomly ordered trials depicting the

presence or absence of the cause and effect. At the end of each
condition, participants judged the likelihood that an effect would
occur given that the observed cause was present. This experiment
is most appropriate for testing BUCKLE because (a) its dependent
measure elicits the quantity computed by BUCKLE; (b) it uses
trial-by-trial learning procedures, which is the way BUCKLE
updates its beliefs; and (c) it uses 10 different contingency condi-
tions, allowing for generality of the tests.

We ran BUCKLE in each of the 10 conditions from this exper-
iment. Because BUCKLE is sensitive to trial order (see Experi-
ment 4), we created 1,000 simulated participants, with a random-
ized order of the observations in each condition. Using the directed
search algorithm described by Hooke and Jeeves (1960),
BUCKLE’s &O-present and &U-present parameters were fitted for
each simulated participant to the mean causal judgments reported
by Buehner et al (2003). All other parameters were set as described
in the Appendix (Table A1).

We calculated the fit between Buehner et al.’s (2003) means
from the 10 conditions in Experiment 3 and the mean strength
estimates generated by BUCKLE from the 1,000 simulated par-
ticipants for each of the same 10 contingency conditions.
BUCKLE accounted for 98% of the variance in actual participants’
judgments. This fit is as good as that of the power PC theory itself
(R2 # .97) and better than that of !P (R2 # .87).6 This result

5 Because the value of P(U # 1 | O # o, E # e) is influenced by the
value of E, it may not be obvious that Equation 11 can produce values of
Epredicted that do not match the actual value of E. However, imagine that a
learner believes that qO # 0 and qU # 0 and then observes a trial on which
O # 1 and E # 1. The first step will produce P(U # 1 | O # 1, E # 1) #
.5. The value of Epredicted would then be 0 because qO # 0 and qU # 0, and
this prediction would be incorrect (because E was present). The bottom line
is that just because the value of P(U # 1 | O # o, E # e) can be shifted
according to the observed data, it cannot always (and generally will not)
take on a value that leads to perfect predictions.

6 People’s causal strength judgments in the Buehner et al. (2003) study,
as well as BUCKLE’s simulation of this experiment, were probabilistic
(e.g., .5) rather than deterministic (i.e., 0, 1, or –1). One might wonder
whether such probabilistic estimates contradict Luhmann and Ahn’s (2005)
claim that causal power is deterministic. Note that the earlier claim about
deterministic causes pertains exclusively to Cheng’s notion of causal
power rather than causal sufficiency, which BUCKLE computes (which is
akin to Cheng’s [2000] notion of contextual causal power or Pearl’s [2000]
probability of sufficiency). Computation of causal power requires several
conditions to be met. For example, there may not be any alternative,
preventative causes present during learning (see Cheng, 1997, for the full
set). As discussed in Luhmann and Ahn (2005), if and only if participants
accept this entire set of requirements will estimates be deterministic. As
Luhmann and Ahn further discussed, however, these assumptions are
extremely unlikely to be satisfied in the real-world situations as well as the
scenarios used in Buehner et al.’s (2003) experiment. For instance, partic-
ipants could have believed that the ostensible causes (medications) did not
impinge directly on their effects but rather operated through a series of
intermediate causal links (perhaps via the shorthand belief in some un-
named mechanism). We (Luhmann & Ahn, 2005) have argued that partic-
ipants with such beliefs must have computed a more general measure of
causal sufficiency (as BUCKLE does) rather than the power PC theory’s
specific version of causal power. When these requisite assumptions for
causal power are dropped, the resulting causal sufficiency may be proba-
bilistic. For instance, the probabilistic estimates of causal sufficiency
would reflect indeterminacy that results from an intervening mechanism.
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should not be too surprising given the previous success of the
related model by Danks et al. (2003).

Experiments on Unobserved Cause Learning

The above simulation showed that BUCKLE is able to account
for a significant portion of people’s behavior in learning of ob-
served causes. However, the crux of BUCKLE is to explain
learning of unobserved causes and its impact on observed causal
learning. At this point, there are hardly any data on learning of
unobserved causes. Below, we report five sets of experiments on
unobserved causal learning and test BUCKLE against other causal
learning models. The models in the first row of Table 1 assume
that people cannot estimate strengths of unobserved causes, and so
Experiments 1 and 2 examine whether learners do in fact learn
about unobserved causes. Experiment 3 investigates whether peo-
ple treat unobserved causes as constantly present, as suggested by
the amended power and R-W models (i.e., models in the middle
row of Table 1), or whether people infer how likely the unobserved
cause is to be present on each trial, as suggested by BUCKLE.
Experiment 4 investigates the iterative nature of BUCKLE by
examining whether people are sensitive to the sequence in which
trials are presented. Experiment 5 further explores an apparent
inconsistency between the current findings and previous findings
from the developmental literature.7

Experiment 1: Judging Unobserved Causes

In this experiment, participants were presented with a situation
that included a single observed cause, a single unobserved cause,
and a single effect (e.g., Figure 2). Four representative contingen-
cies between the observed cause (O) and the effect (E) were used,
as illustrated in Figure 5. In the Perfect and the Zero conditions,
the correlations between O and E were 1 and 0, respectively. The
remaining two conditions represent moderate, probabilistic rela-
tionships between O and E. In the Unnecessary condition, O was
unnecessary but sufficient for E, and in the Insufficient condition,
O was insufficient but necessary for E. In each condition, partic-
ipants observed the contingency between O and E specified in
Figure 5 in a trial-by-trial manner and, after observing all trials in
a condition, provided causal strength estimates for both the ob-
served and the unobserved causes.

One of the main goals of Experiment 1 was to test the prediction
derived from !P and the power models that learners would be
unable to provide any unique solution for strengths for the unob-
served causes. As mentioned earlier, we have previously shown
(Luhmann & Ahn, 2003) that participants are willing to provide
judgments of an unobserved cause even when explicitly given the
option not to do so. However, willingness alone is weak evidence
for unobserved cause learning. Learners still might not be able to
provide systematic judgments of unobserved causes (e.g., no dif-
ferences between contingencies), in which case we would con-
clude that learners, like the power models, are unable to make
unique judgments about the strength of unobserved causes.

However, if participants do provide systematic judgments of the
unobserved cause, their estimates can be compared with predic-
tions of BUCKLE, R-W, and the power variant of R-W. Because
these models’ parameters should be fit to participants’ data, the
models’ quantitative predictions are described after the report of

the results. Here, we briefly address only BUCKLE’s predictions
conceptually (see Figure 5).

In the Unnecessary condition, BUCKLE increases the strength
of the unobserved cause because there are several observations on
which the unobserved cause certainly co-occurs (with the effect
O! E). Because BUCKLE assumes that causes compete with each
other to accrue strength, the increased strength of the unobserved
cause limits the strength of the observed cause from reaching
ceiling levels (cf. power PC). In the zero condition, the unobserved
cause again gains strength because of the O! E observations. The
observed cause does not generally accrue any strength because of
the zero correlation (as predicted by both !P and the power PC
theory). In the Perfect condition, BUCKLE predicts that the ob-
served cause will accrue nearly all of the causal strength because
of the perfect correlation and the unobserved cause will accrue
almost none (as predicted by both !P and the power PC theory).
In the Insufficient condition, the strength of the observed cause
reaches moderate levels because its covariation suggests moderate
sufficiency (as predicted by both !P and the power PC theory).
The strength of the unobserved cause also reaches moderate levels
because the observed cause that has only moderate causal strength
is unable to completely explain the occurrence of the effect. In
short, BUCKLE predicts the unobserved causal strength to be
higher in the Unnecessary and the Zero conditions than in the
Insufficient and the Perfect conditions.

The design of Experiment 1 also allows us to examine the
well-known discounting principle (Kelley, 1972). Although not
presented as a full computational model in this article (but see
Luhmann, 2006, for tests of a constraint satisfaction model that
instantiate this principle), the discounting phenomenon has been
shown to be robust, and thus it is a highly plausible heuristic for
the current situation. According to this principle, when a strong
cause is observed, the alternative unobserved cause will be dis-
counted (i.e., inferred to be weak), and vice versa. Taking !P as
our measure of causal strength, the observed cause is equally
strong in the Unnecessary and Insufficient conditions, and there-
fore, the discounting principle predicts no difference between these
two conditions in terms of the unobserved causal strength. How-
ever, BUCKLE predicts the unobserved causal strength to be lower
in the Insufficient than in the Unnecessary condition (see Figure
5). If we take the power models as our measure of causal strength,
assuming all of the requisite assumptions are met, then the ob-
served cause is equally strong in the Unnecessary and Perfect
conditions (qO # 1), and again the discounting strategy predicts no
difference between these two conditions in terms of the unob-
served causal learning. However, BUCKLE predicts the unob-
served causal strength to be lower in the perfect condition than in
the unnecessary condition.

We conducted two experiments, Experiments 1A and 1B, dif-
fering only in the dependent variables, because different models
measure different quantities. Experiment 1A measured causal suf-
ficiency (i.e., the degree to which a cause is sufficient to bring
about its effect; see Buehner et al., 2003) to test BUCKLE and the

7 In all experiments, participants were undergraduate students at either
Vanderbilt University or Yale University, participating for partial fulfill-
ment of course credit or for pay. Details of the experiments reported in this
article can be found in Luhmann (2006).
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power models. Experiment 1B used the traditional but ambiguous
method of eliciting causal judgments (e.g., To what extent does X
cause Y?) typically used when evaluating !P and R-W (e.g.,
Shanks, 1987).8

Method

Stimuli consisted of four electrical systems, each containing one
button whose state (pressed or not) was observable, one button
whose state was unobservable and a single light. Information about
the behavior of these systems was presented visually on a com-
puter (see Figure 2, for an example). The unavailable state of the
unobserved button was denoted with a large question mark super-
imposed over the button. The state of the light (on or off) was
always observable. Figure 5 shows the cell frequencies for each
condition.

Participants (N # 24 in Experiment 1A; N # 30 in Experiment
1B) first received general instructions about what they would
observe (e.g., two buttons, a light) and what the symbols meant
(e.g., question mark). They were also told that nothing other than
the two buttons could influence the light. This was done to equate
participants’ assumptions about the situation with the assumptions
used in the modeling reported later. (See Experiment 2 for alter-
native instructions.) Each participant saw all four systems in a
counterbalanced order. The trials within each system were pre-
sented in a quasi-randomized order to evenly distribute the differ-
ent types of trials.

After viewing the entire set of trials, participants rated the causal
strength of the observed and unobserved buttons separately. In
Experiment 1A participants were told, “Imagine running 100 new
tests in which the [color] button was pressed and the [color] button
was not. On how many of these tests do you expect the light to turn

on?” Participants responded with a number between 0 and 100. In
Experiment 1B, participants were asked to “judge the extent to
which pressing the [color] button caused the light to turn on.”
Responses could range from –100 ([color] button prevented the
light from turning on) to 100 ([color] button caused the light to
turn on), with zero labeled [color] button had no influence on the
light turning on. Participants also rated how confident they were in
each of their causal judgments on a scale from 1 (not at all
confident) to 7 (very confident).

Results and Discussion

Experiment 1A. Figure 6 shows participants’ causal judg-
ments. A one-way repeated measures analysis of variance
(ANOVA) on causal judgments of unobserved causes revealed a
significant effect of contingency, F(3, 69) # 21.93, p . .0001, 1p

2

# 43.19, demonstrating that the participants gave varied but sys-
tematic causal judgments of the unobserved causes. Such system-
atic judgments would have been highly unlikely had participants
felt that there were no unique solutions for unobserved causal
strengths.

Furthermore, participants’ confidence ratings suggest they felt
that unobserved causal strengths were not difficult to compute
(Figure 7). First, confidence ratings for unobserved causes were
significantly higher than the midpoint of the scale (all ps . .05).

8 R-W measures association (i.e., the degree to which the cause and
effect co-occur). Association, like a regression weight, does not distinguish
between sufficiency and necessity. Association is simply a holistic measure
of the strength of a relationship. Pearl (2000) has noted that !P, a quantity
that R-W often mirrors at asymptote, can be interpreted as the probability
of necessity and sufficiency.
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learning.
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Second, participants’ confidence ratings for observed causes (M #
4.88, SD # 1.59) did not differ from those for unobserved causes
(M # 4.83, SD # 1.51; ps * .30 in all four conditions).

What was the main factor for the systematic unobserved causal
judgments in Experiment 1A? As can be seen in Figure 6, unob-
served causes received much higher ratings when O! E observations
were included (i.e., the Unnecessary and the Zero conditions; M #
73.35, SD # 26.80) than when they were not included (i.e., the
Perfect and the Insufficient conditions; M # 19.88, SD # 23.49),
t(23) # 6.57, p . .0001, as predicted by BUCKLE (Figure 5). The
effect of O! E observations makes sense because participants were
told that there were only two causes, and the effect that occurred
in the absence of the observed cause could only have been brought
about by the unobserved cause. According to BUCKLE, when
qU $ 0 (i.e., when U is not preventative) and O # 0 and E # 1,
the probability that the unobserved cause is present is always 1
(see Appendix, Equations A1 and A3). Because the unobserved
cause is inferred to be present with a certainty during O! E obser-
vations, the strength of the unobserved cause would increase
significantly during these trials.9

Participants did not appear to rely on the discounting principle
to estimate the strength of the unobserved causes according to the
strength of the observed causes. Whereas the causal power of the
observed cause (e.g., Cheng, 1997) was the same in the Unneces-
sary and Perfect conditions, participants judged the unobserved
cause to be significantly stronger in the former than in the latter,
t(23) # 6.72, p . .0001. Whereas !P for the observed cause was
the same in the Unnecessary and Insufficient conditions, partici-
pants judged the unobserved cause to be significantly stronger in
the former than in the latter, t(23) # 5.68, p . .0001.

Model performance in Experiment 1A. We compared the par-
ticipants’ judgments with the models described above. Recall that
because Experiment 1 was designed to provide an initial look at
whether people would give any systematic estimates on unob-
served cause (which they did), it was not meant to offer a critical
test for distinguishing the models (see the subsequent experi-
ments). As described below, all models fit participants’ data to
some extent.

The power models provide estimates of only the observed cause,
and these estimates are illustrated in Figure 5. There was only a
moderate amount of correspondence between these and partici-
pants’ judgments (R2 # .51, root-mean-squared deviation
[RMSD]10 # 38.11), especially in the Unnecessary contingency,
where participants’ average judgment (M # 33.17) was signifi-
cantly less than the predicted 100, t(23) # 8.83, p . .0001.
Amending the power models with the assumption that P(U # 1) #
.5 allows for predictions about the unobserved cause strength.
With these additional predictions, the amended power models
produced a better fit (R2 # .67, RMSD # 31.95), with unobserved
cause estimates diverging most greatly in the Zero condition,
where participants’ judgments (M # 69.08) were significantly less
than 100, t(23) # 4.66, p . .0001, and in the Insufficient condi-
tion, where participants’ judgments (M # 27.25) were signifi-
cantly greater than 0, t(23) # 3.75, p . .001.

As discussed earlier, the power models can provide causal
strength estimates of only the observed cause. To generate predic-
tions about the unobserved causes, we assumed that P(U # 1) #
.5. With this additional constraint, the amended power models
were able to produce a fair fit (R2 # .67, RMSD # 31.95). It
should be noted that there is one particularly salient deviation from
the participants’ estimates: Whereas participants’ average judg-
ment for O in the Unnecessary contingency was very low (M #
33.17), the power models predicted 100, t(23) # 8.83, p . .0001.
Also note that these are judgments of the observed cause where
both the original and amended power models make the same
prediction. Indeed, it is mainly for this reason that the fit of the
original power models’ predictions to the observed cause judg-
ments is quite poor (R2 # .51, RMSD # 38.11). It appears that
participants lowered their estimates of O in the unnecessary con-
dition because of their belief about a strong U. The power models,
in their current form, are not amenable to such competition. This

9 In BUCKLE, this is implemented by the fact that &U would reach
maximal levels (see Equation 14) and thus lead to large changes in qU (see
Equation 13).

10 RMSD is simply the square root of the mean squared error and
provides a measure of the absolute deviation, rather than the measure of
relative deviation provided by R2.

Figure 6. Causal strength judgments from Experiment 1A. Error bars
indicate standard errors. Diamonds represent strength estimates made by
BUCKLE (bidirectional unobserved cause learning).

Figure 7. Confidence judgments from Experiment 1A. Error bars indi-
cate standard errors. Dashed line indicates the midpoint of the scale.
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aspect is further discussed as we examine BUCKLE’s performance
in more detail (e.g., in Experiment 3). Next, we simulated the
current experiment with the power variant of R-W (Danks et al.,
2003) and BUCKLE. The observations from each contingency
were presented to these models in the same order in which partic-
ipants saw them. For each model, two free parameters were fitted
to participants’ average causal judgments.11 The amended power
variant of R-W—that is, assuming P(U # 1) # 1 (see introduc-
tion)—provided a reasonable fit to participants’ judgments (R2 #
.68, RMSD # 16.59). BUCKLE, which dynamically determines
the occurrence of the unobserved cause, provided the best fit (R2 #
.79, RMSD # 12.90, see Appendix Table A2, for fitted parameter
values). Subsequent experiments compare all of these models and
their underlying assumptions more critically.

Experiment 1B. Figure 8 shows participants’ causal ratings
from Experiment 1B. A one-way repeated measures ANOVA on
causal judgments of unobserved causes revealed a significant
effect of contingency, F(3, 87) # 22.78, p . .0001, 1p

2 # 40.80,
showing again that participants gave varied but systematic causal
judgments of the unobserved causes. Unobserved causes were
again judged to be stronger when O! E observations were included
(i.e., the Unnecessary and the Zero conditions; M # 69.00, SD #
28.55) than when they were not (i.e., the Perfect and the Insuffi-
cient conditions; M # 6.28, SD # 34.18), t(29) # 8.14, p . .0001.

Just as in Experiment 1A, the discounting principle could not
account for participants’ unobserved causal judgments. Partici-
pants judged the unobserved cause to be significantly stronger in
the Unnecessary condition than in the Perfect condition, t(29) #
6.73, p . .0001 (which equate the causal power of the observed
cause). The unobserved cause was also judged to be significantly
stronger in the Unnecessary condition than in the Insufficient
condition, t(29) # 3.43, p . .01 (which equate !P).

Model performance in Experiment 1B. The causal strength
predictions of !P are illustrated in Figure 5. Despite the fact that
!P is unable to produce estimates for the unobserved causes, there
was a good fit between its estimates and participants’ judgments of
the observed causes (R2 # .85, RMSD # 17.26). Turning to R-W,
we again fitted its two free parameters to participants’ mean
judgments using the method described above, treating the con-

stantly present experimental context as though it were equivalent
to the unobserved cause of interest. R-W was able to fit the data
well (R2 # .77, RMSD # 21.97). Again, subsequent experiments
compare these models more critically.

Summary. Experiment 1 provides an initial look at unobserved
cause learning. Given the overt lack of information about part of
the causal system, learners could have provided random judgments
of the unobserved cause. Yet participants appeared relatively un-
fazed by the obvious lack of information and provided systematic
responses about the unobserved cause. These findings allow us to
rule out the models in the first row of Table 1, which predict that
participants should be agnostic about strength of the unobserved
cause.

One methodological limitation of the current experiment is that
the task may have encouraged participants to learn about the
unobserved causes, because they were told ahead of time that they
would be asked to evaluate the strength of the unobserved causes.
Participants were also reminded about the existence and possible
operation of the unobserved causes on every trial (see Figure 2),
which may have led them to dedicate unnatural attention to the
unobserved causes. Experiment 2 examines this possibility.

Experiment 2: Learning Without Explicit Instructions
About Unobserved Causes

In Experiment 2, we removed all mention of unobserved causes
during learning. Only after the learning portion of the experiment
had concluded were participants told about the possibility of an
unobserved cause. This way, the learning phase of the experiment
was no different from that of a traditional causal learning experi-
ment, concerning only the learning of observed causes.

Method

Experiment 2 was a 2 (Explicit vs. Implicit) 2 2 (Unnecessary
vs. Insufficient; see Figure 5) between-subjects design. The Ex-
plicit condition (n # 24) proceeded just as in Experiment 1.
Participants in the Implicit condition (n # 26) were told that the
system included one button and a light and were not given any
initial information about the existence (or nonexistence) of alter-
native causes. Only after viewing the entire set of trials were these
participants told that the initial description of the system was
incomplete and that they would be asked to judge a second button
whose information had been lost. All participants then evaluated
each button as in Experiment 1A.

Results and Discussion

The pattern of results in the Implicit condition (Figure 9) was
identical to that found in Experiments 1A and 1B. The unobserved
cause was judged to be significantly stronger in the Unnecessary

11 For the power variant of R-W, the two free parameters were &1 and
&0, the learning rate parameters associated with a present and absent cause,
respectively. For BUCKLE, the two free parameters were &O and &U, the
learning rate parameters associated with the observed and unobserved
cause, respectively. The best fitting values of these parameters were found
using the directed search algorithm described by Hooke and Jeeves (1960).

Figure 8. Causal strength judgments from Experiment 1B. Error bars
indicate standard errors. Diamonds represent the Rescorla–Wagner mod-
el’s strength estimates.
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than in the Insufficient condition even when participants had no
information about an alternative cause until they were asked to
make judgments.12 A 2 (Explicit vs. Implicit) 2 2 (Unnecessary
vs. Insufficient) ANOVA on the ratings of the unobserved cause
showed significantly higher ratings in the Unnecessary condition
(M # 65.58, SD # 40.57) than in the Insufficient condition (M #
16.75, SD # 31.53), F(1, 46) # 21.28, p . .0001. Of note, both
the main effect of the instructional manipulation (i.e., Explicit vs.
Implicit) and the interaction effect were nonsignificant (all Fs .
0.90).

Summary of Experiments 1 and 2

The results of Experiments 1 and 2 allow us to begin evaluating
the models under consideration. Models that ignore unobserved
causes or are otherwise unable to produce unobserved cause judg-
ments (the models in the top row of Table 1) will be unable to
account for participants’ willingness (Luhmann & Ahn, 2003) and
ability to provide systematic unobserved cause judgments. Thus,
our subsequent investigation is dedicated to those models that are
able to produce unobserved cause estimates. Experiment 1 found
that the remaining models exhibited varying degrees of success,
with BUCKLE exhibiting a slightly better fit than the rest. How-
ever, because it is difficult to interpret small differences in fit, we
turn our attention to the larger conceptual differences between the
remaining models. The first of these differences we consider
relates to how the unobserved cause occurs: Is it constant, or does
it vary from trial to trial (i.e., the middle vs. bottom row in Table 1)?

Experiment 3: Evaluating Beliefs About the Occurrence
of Unobserved Causes

The main goal of Experiment 3 was to explore whether and how
people’s judgments about the occurrence of the unobserved cause
vary. On every trial, participants were presented with information
about the presence or absence of one of the causes and the effect,
while the second cause remained unobserved, and were asked to

rate the probability that the unobserved cause was present on each
trial.

As explained in the introduction, the most obvious innovation of
BUCKLE is its dynamic inferences about the occurrence of the
unobserved cause. In contrast, the amended power and R-W mod-
els (the middle row of Table 1) are unable to dynamically infer the
occurrence of an unobserved cause on the basis of the type of trial,
or prior learning, and are able to estimate the causal strength of the
unobserved cause only because they assume that the unobserved
cause is constantly present as part of the constantly present back-
ground. Thus, the first question is whether people’s judgments
about the occurrence of the unobserved cause vary or remain static.

The second question is, if the unobserved cause is believed to
vary, how does it vary? BUCKLE’s operation suggests that even
for unobserved causes, causal strength estimates and covariation
are intimately related. For example, BUCKLE predicts that the
stronger one believes the unobserved, generative cause is, the
more one would believe that U would covary with E (and vice
versa). These predictions are derived from Equations A1 and A2 in
the Appendix. As the strength of the unobserved cause (qU) goes
to 1, P(U # 1 | O # o, E # 1) increases (it approaches

1
+$o ! qO% # 1,

) and P(U # 1 | O # o, E # 0) decreases (it

approaches 0). Thus, as the strength of the unobserved cause
increases, it is more likely to be present when the effect is present
and less likely to be present when the effect is absent. Experiment
3 examines these detailed predictions of BUCKLE.

Method

The method was the same as in Experiment 1 (Figure 5) except
that after each trial was presented, participants (N # 24) judged,
“How likely is it that the [button corresponding to the unobserved
cause] was pressed in this test?” (0 # definitely NOT pressed;
10 # definitely pressed). Asking participants about the probability
of the unobserved cause on every trial did not appear to have
created an unusually disruptive learning situation, because the
pattern of causal strength judgments (see Figure 10) mirrored that
of Experiment 1.13 The remaining procedure and the design were
the same as in Experiment 1A except that the cell counts of 7 in
Figure 5 were changed to 10 to increase the number of measure-
ments.

12 One might argue that participants made judgments about the unob-
served cause retrospectively when they were asked about the unobserved
cause, rather than spontaneously making inferences about the unobserved
cause during learning. Experiment 4 shows that this was unlikely to be the
case.

13 A one-way repeated measures ANOVA on causal judgments of un-
observed causes revealed a significant main effect of contingency, F(3,
66) # 10.37, p . .0001 (one participant failed to provide judgments for the
perfect condition). As in Experiment 1, the effect of contingency is in large
part due to participants giving much higher ratings on conditions with O! E
(M # 72.60, SD # 23.73) than on conditions without O! E (M # 41.47,
SD # 23.08).

Figure 9. Causal strength judgments from Experiment 2. Error bars
indicate standard errors.
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Results and Discussion

Figure 11 shows the mean probability judgments broken down
by contingency and trial type.14 First, note that participants be-
lieved that the unobserved cause was neither constantly present
(i.e., the assumption allowing estimation of unobserved causal
strengths from the R-W models; see introduction) nor equally
likely on all trials (i.e., the assumption allowing unobserved causal
strengths from the amended power models). Instead, probability
judgments varied considerably and systematically, as BUCKLE
assumes. For example, participants’ probability judgments varied
as a function of the type of observation (e.g., OE! , OE). The main
effect of trial type from one-way repeated measures ANOVAs was
significant in three conditions (all ps . .05) and marginal in the
perfect condition, F(1, 23) # 4.08, p # .055.

Participants’ probability judgments also suggest that they ex-
pected the unobserved cause to covary with the effect, as imple-
mented in BUCKLE. As shown by the marginal averages below
each matrix in Figure 11, participants believed the unobserved
cause to be more likely present when the effect was present than
when the effect was absent. This finding makes sense given that
participants’ causal strength judgments for the unobserved cause
were greater than zero in all four conditions; positive covariation
led to positive causal judgments, just as in observed cause learn-
ing.

Taking this a step further, participants may have believed the
unobserved cause covaried with the effect more in those situations
where the unobserved cause was judged to be strong than in those
situations where the unobserved cause was judged to be weak. To
explore this possibility, we compared probability judgments during
OE trials and OE trials, because these trial types were shared
across the four contingencies, and therefore, any differences found
cannot have been due to the trial type being judged. If participants
believed the unobserved cause varied with the effect, they should
believe the unobserved cause to be more likely present on OE trials
and less likely present on OE trials.

We subtracted the average rating for OE trials from the average
rating for OE trials. This composite score served as an index of the

degree to which participants believed the unobserved cause to
covary with the effect on these trials. We then correlated this index
with the group’s mean causal judgments of the unobserved cause
within each condition. The correlation was significant, r(4) # .98,
p . .05, suggesting that beliefs about stronger covariation (i.e.,
higher composites) were associated with beliefs about a stronger
unobserved cause. Here again we find that the process of unob-
served cause learning shares many of the characteristics of ob-
served cause learning.

We were also interested in the degree to which participants
believed the unobserved cause varied with the observed cause. As
mentioned in the introduction, for the power models to operate
correctly, unobserved causes must be independent of observed
causes—that is, P(O | U # 1) # P(O | U # 0) (see Cheng, 1997).
In contrast, recent work (Hagmayer & Waldmann, 2007) suggests
that participants do not necessarily share this assumption. To
examine this issue in the current study, we averaged probability
ratings for trials in which the observed cause was present—that is,
P(U | O)—and for trials in which the observed cause was absent—
that is, P(U!3O)—separately for each participant and each condi-
tion.15 The difference between these quantities was significant in
the Unnecessary condition (mean difference # .97), t(23) # 2.18,
p . .05; the Zero condition (mean difference # –.43), t(23) #
2.12, p . .05; and the Insufficient condition (mean difference #
1.80), t(23) # 4.38, p . .001, and was marginally significant in the
Perfect condition (mean difference # .94), t(23) # 2.02, p # .055.
These findings mirror those of Hagmayer and Waldmann (2007)
and suggest that learners are not making the assumptions required
by the power models.

BUCKLE’s performance. Because participants’ probability
estimates were variable (a finding that cannot be accounted for by
any of the power or R-W models), we simulated Experiment 3
using only BUCKLE. The best fitting parameters allowed
BUCKLE to account for 76% of the variance in participants’
causal judgments (RMSD # 13.65). These same parameter values
were then used to derive probability estimates of U for each trial
in each contingency. These values (multiplied by 10 to match the
scale used by participants) can be seen in Figure 11. We note
several important features of the probability values.

First, BUCKLE predicts that probability estimates should differ
depending on trial type (e.g., OE vs. OE). To quantitatively eval-
uate this effect, we averaged probability estimates separately for
each trial type in each condition for both participants and
BUCKLE. The probability estimates generated by BUCKLE ac-
counted for a significant amount of variance in participants’ prob-
ability judgments (R2 # .91, RMSD # 1.60).

14 The results reported here concern only the probability judgments
averaged across the trial positions because participants’ probability judg-
ments hardly varied as a function of trial position. BUCKLE’s probability
estimates are similarly flat. See Luhmann (2006, Experiment 5) for more
detailed results.

15 By averaging across different trial types (e.g., OE and E! ) to derive an
estimate of the conditional probability—for example, P(U | O # 0)—we
must assume that our participants’ probability judgments were mapped
onto the response scale in a more or less linear manner. Violations of this
assumption could distort further interpretation. Nonetheless, because this is
the methodology used by Hagmayer and Waldmann (2007, Experiment 1),
we are able still to compare our findings with theirs.

Figure 10. Causal strength judgments from Experiment 3. Error bars
indicate standard errors. Diamonds represent estimates made by BUCKLE
(bidirectional unobserved cause learning).
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Second, as can be seen in Figure 11, the probability of U being
present is much higher when the effect is present (e.g., OE and O! E)
than when the effect is absent (e.g., OE or OE), illustrating that
BUCKLE, like the participants, predicts covariation between U
and E. Composite scores for each contingency (i.e., difference
between probability estimates from OE and OE trials) using
BUCKLE (4.25, 4.69, 1.07, and 1.11 for the Unnecessary, Zero,
Perfect, and Insufficient conditions, respectively) were highly cor-
related with BUCKLE’s own strength estimates for the unobserved
cause, r(4) # .99, p . .05, just as they were for participants’
judgments.

Summary. The results of Experiment 3 indicate that learners
do not believe that the unobserved, alternative cause is constantly
present or present with a fixed probability across all trial types and
conditions. This suggests that the assumptions needed to amend
the power and R-W models to obtain predictions about unobserved
causal strengths do not accurately describe the manner in which
people learn about unobserved causes. Instead, learners appear to
make sophisticated inferences about the occurrence of unobserved,
alternative causes. Judgments about the occurrence of the unob-
served cause varied greatly as a function of whether the observed
cause and the effect were present. Judgments also varied system-
atically, even for identical observations. Contingencies that elic-
ited strong causal judgments of the unobserved cause led partici-
pants to believe that the unobserved cause varied with the effect
more than conditions that elicited weaker unobserved cause judg-
ments. These findings suggest that beliefs about causal strength
(e.g., the perceived strength of the unobserved cause) and beliefs
about the occurrence of the unobserved cause are intimately re-
lated, just as for observed causes.

With these results we may now conclude that the most accurate
explanation for people’s unobserved cause learning occupies the
bottom row of Table 1. As discussed in the introduction, EM
cannot produce unique estimates of unobserved causal strength,
and thus we are left with BUCKLE. As discussed above, we
believe that BUCKLE’s iterative process is critical to its ability to
successfully perform this task. With Experiment 4 we attempt to
provide more direct evidence that people’s behavior reflects a
specifically iterative process.

Experiment 4: Order Effects

In Experiment 4, we manipulated the order in which specific types
of observations were encountered and examined the resulting change
in causal strength judgments. The set of trials used is illustrated in the
top panel in Figure 12. This set of trials was divided into two blocks.
One of the blocks was analogous to the Unnecessary condition in
Experiment 1 and contained O! E, O! E! , and OE observations. The other
block was analogous to the Insufficient condition in Experiment 1 and
contained OE! , O! E! , and OE observations. Participants received these
blocks in one of two orders: Unnecessary followed by Insufficient
(Unnecessary–Insufficient condition) or Insufficient followed by Un-
necessary (Insufficient–Unnecessary condition; see the bottom panel

Figure 11. Average trial-by-trial probability judgments of participants and predictions of BUCKLE for the
various trial types in each condition of Experiment 3. BUCKLE # bidirectional unobserved cause learning.

Figure 12. Illustration of the design used in Experiment 4. The two sets
of contingency tables in the bottom panel show the order in which partic-
ipants received two blocks of trials in each condition. Each ordering results
in the identical contingency, as described by the table at the top.
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in Figure 12). Note that because the only manipulation was the order
of the two blocks, participants always saw the same set of observa-
tions by the end of the sequence.

The simultaneous models (i.e., the left column of Table 1) are,
by definition, unable to account for trial order effects, because
their computations are performed over the entire set of observa-
tions at once. Thus, any order effects exhibited by participants’
judgments would support an iterative model such as BUCKLE.

BUCKLE specifically predicts that unobserved cause judgments
should differ between the two orderings. To see why this is, consider
the Unnecessary–Insufficient order. During the first block of this
condition, O! E observations will lead to the unobserved cause being
perceived as strong (as illustrated in Experiment 1). When the second
block (without O! E observations) is encountered, the now-strong un-
observed cause will be interpreted as covarying with the effect (as
illustrated in Experiment 3). For instance, a learner would believe that
the unobserved cause would likely be present during OE trials but
absent in OE! and O! E! trials. These inferences would further increase
the strength of the unobserved cause.

Now consider the Insufficient–Unnecessary condition, in which
O! E observations are encountered in the second half. In this situ-
ation, at the end of the first half, the unobserved cause will be
perceived as weak (as illustrated in the Insufficient condition of
Experiment 1). Only when the second block (with O! E observa-
tions) is encountered will the perceived strength of the unobserved
cause begin to increase. Thus, only the second block in this order
will increase the strength of the unobserved cause. As compared
with the Unnecessary–Insufficient order, there are far fewer ob-
servations that act to increase the strength of the unobserved cause.
Thus, the unobserved cause should be perceived as stronger when
O! E observations are encountered in the first block than when they
are encountered in the second block.

Though Experiment 3 did not provide support for R-W and the
power variant of R-W, Experiment 4 provides another opportunity
to test these models in a more natural context than Experiment 3.
It is interesting to note that these models make qualitatively
different predictions from BUCKLE in Experiment 4, because they
are unable to modulate P(U # 1) on the basis of prior learning.
Consider the Unnecessary–Insufficient order. Like BUCKLE,
these models predict that O! E observations act to increase the
strength of the unobserved cause during the first block (e.g., see
R-W’s predictions for the unnecessary condition in Figure 8).
However, whereas this strength leads BUCKLE to reduce the
probability of the unobserved cause occurring during the second
block’s O! E! and OE! observations, both R-W models assume that
the unobserved cause is definitely present during both O! E! and OE!
observations. The unexpected absence of an effect in the presence
of the unobserved cause during these observations (i.e., large
“error”) then leads to a significant drop in the strength of the
unobserved cause. Thus, the Unnecessary–Insufficient order leads
both the R-W and power variant of R-W to predict relatively weak
judgments of the unobserved cause.

In contrast, consider the Insufficient–Unnecessary order. Like
BUCKLE, the R-W models predict that the unobserved cause
gains only small amounts of causal strength during the first block
(e.g., see R-W’s prediction for the insufficient condition in Figure
8). However, whereas this weakness leads BUCKLE to be rela-
tively agnostic about the occurrence of the unobserved cause
during the second block’s OE observations, the R-W models

continue to assume that the unobserved cause is definitely present
during OE observations. The unexpected presence of an effect in
the presence of the unobserved cause during these observations
then leads to a significant increase in the strength of the unob-
served cause. Thus, the Insufficient–Unnecessary order leads both
the R-W and the power variant of R-W to predict relatively strong
judgments of the unobserved cause.

To summarize, BUCKLE and the R-W models differ in their
predictions about the influence of the order manipulation.
BUCKLE uses the beliefs developed in the first half of the se-
quence to modulate beliefs about the occurrence of the unobserved
cause in the second half. R-W and the power variant of R-W
cannot adjust the occurrence of the unobserved cause on the basis
of prior learning and thus predict that the second half of the
sequence is processed in a relatively unbiased manner. Thus,
Experiment 4 provides another test of the difference between the
R-W models’ constantly present unobserved cause and
BUCKLE’s dynamically occurring unobserved cause.

Method

The stimulus materials were similar to those used in Experiment 1.
The cell frequencies of each condition are summarized in Figure 12.
In the Unnecessary–Insufficient condition, participants first saw the
block containing O! E trials followed by the block containing OE! trials.
In the Insufficient–Unnecessary condition, participants saw the two
blocks in the reverse order. Although the sequence of trials was made
of two blocks, there was nothing noting the change from one block to
the other, and as far as participants were concerned, they were
experiencing one continuous stream of observations. The procedure
of Experiment 4 was the same as in Experiment 1A. Each participant
saw both orders instantiated in different colored buttons, and the
orders were counterbalanced across participants (N # 50).

Results and Discussion

As summarized in Figure 13, participants gave a significantly
higher rating for the unobserved cause in the Unnecessary–
Insufficient condition (M # 73.50, SD # 28.79) than in the
Insufficient–Unnecessary condition (M # 61.66, SD # 34.81),
t(49) # 2.89, p . .01, even though they embodied identical contin-

Figure 13. Causal strength judgments from Experiment 4. Error bars
indicate standard errors. The diamonds represent estimates made by
BUCKLE (bidirectional unobserved cause learning).
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gencies overall. These results clearly indicate that simultaneous mod-
els will be unlikely to account for people’s unobserved cause learning.

To test iterative models, we simulated BUCKLE as well as R-W
and the power variant of R-W (Danks et al., 2003) for each of the
conditions used in Experiment 4 by presenting the models with the
exact same set of observations in the exact same order in which
participants received them, fitting the free parameters as before.
BUCKLE predicted the unobserved cause to be stronger in the
Unnecessary–Insufficient condition (qU # 69.19) than in the
Insufficient–Unnecessary condition (qU # 64.28; see Figure 13).
These estimates accounted for 91% of the variance in participants’
judgments for both unobserved and observed causes (RMSD # 5.79).
Both the traditional and power variants of R-W predicted an order
effect but did so in the wrong direction. These models estimated the
unobserved cause to be stronger in the Insufficient–Unnecessary
condition (R-W: qU # .56; power variant: qU # .51) than in the
Unnecessary–Insufficient condition (R-W: qU # .32; power variant:
qU # .36), resulting in poor fit (R2 # .52, RMSD # 19.22 for the
traditional R-W; R2 # .57, RMSD # 17.53 for the power variant of
R-W).

BUCKLE’s unique success in the current experiment suggests
that the observed findings result from dynamic beliefs about the
occurrence of the unobserved cause. Experiment 4 also provides
additional evidence for the details of BUCKLE’s unobserved
cause learning process. Experiment 3 suggested that participants
were able to provide systematic causal strength estimates of un-
observed causes even when they had no a priori knowledge of the
existence of alternative causes. Experiment 4 suggests that people
make spontaneous inferences about the occurrence of unobserved
causes despite never being prompted to do so. These results also
illustrate that inferences about the occurrence of unobserved
causes can have a real impact on learning and, ultimately, causal
strength judgments.

Experiment 5: The Influence of OE! Observations

Experiment 5 investigated one finding that appears to contradict
BUCKLE’s behavior. Schulz and Sommerville (2006) demonstrated
that preschoolers believe that OE! observations suggest the preventa-
tive influence of an unobserved cause. The current study, however,
has failed to obtain similar effects. For example, the insufficient
condition in Experiment 1A included OE! observations, but the unob-
served cause was judged to be generative (e.g., M # 27.25).

This apparent discrepancy can be explained as follows. Accord-
ing to BUCKLE, OE! observations can occur for two separate
reasons. For example, if a learner believes, on the basis of previous
trials, that O is generative and U is preventative, then an OE!
observation may occur (a) because U prevented the effect from
happening or (b) because O is not entirely sufficient to bring about
the effect (see Equation A6 in the Appendix). In the latter case, it
is ambiguous whether U is present or absent, and thus, the amount
of learning taking place about U during OE! observations would be
reduced, resulting in weak (but not necessarily preventative) causal
strength for U, as observed in the current study.

BUCKLE predicts, however, that if the observed cause were
sufficiently strong (as preschoolers might have believed in Schulz
& Sommerville’s [2006] study), then OE! observations would more
strongly indicate the influence of a preventative unobserved cause.
More specifically, the term [1-o ! qO], from the denominator of

Equation A6 in the Appendix, will decrease, increasing P(U # 1).
With the unobserved cause now likely to be present in the absence
of the effect, qU will decrease (i.e., a stronger preventative cause).
Experiment 5 tested these predictions by training participants,
before observing OE! , to believe the observed cause was strong.

Method

Each participant was randomly assigned to either the Unnecessary
condition (n # 22) or the Insufficient condition (n # 22). The trial
sequence was divided into two phases. The first phase was the same
for both conditions and was designed to increase the perceived
strength of the observed cause without changing beliefs about the
unobserved cause. During the first phase (20 trials), both of the causes
were observable. The cause that was to be unobserved in the second
phase was explicitly noted to be absent on every trial (see Figure 14),
whereas the other cause varied across trials with !P of .8. The second
phase (12 trials) was similar to previous experiments; the unobserved
cause was unobserved, and the observed cause remained observed. In
the Insufficient condition, the second phase included OE! , OE, and O! E!
observations, and in the Unnecessary condition it included O! E, OE,
and O! E! observations. At the end of the second phase, participants
rated the causal strength of the observed and unobserved cause as in
previous experiments.

New stimulus materials were developed, because the buttons
and lights used as stimuli previously are more compatible with
generative than with preventative causal relations (i.e., buttons
normally do not prevent lights from being turned on). Stimuli in
Experiment 5 were novel medications (e.g., “DJE-143”) and phys-
ical side effects (e.g., “salivation increased/did not increase”).

Results and Discussion

As shown in Figure 15, the unobserved cause was judged to be
significantly preventative in the insufficient condition (M # –12.27,
SD # 23.51), one-sample test against zero: t(21) # 2.45, p . .05,
replicating Schulz and Sommerville (2006), whereas in the unneces-
sary condition it was judged to be significantly positive (M # 34.77,
SD # 23.25), one-sample test against zero: t(21) # 7.01, p . .0001.
Furthermore, judgments of the observed cause in the insufficient
condition were significantly lower than those in the unnecessary

Figure 14. A sample trial used in the first phase of Experiment 5. One of
the causes (the bottom one) is observed throughout the entire experiment.
The other cause (the top one) is observed and constantly absent in the first
phase. In the second phase, this cause will become unobserved, just as in
previous experiments.
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condition, t(42) # 6.67, p . .0001, indicating that OE! observations
decreased the perceived strength of the observed cause.

BUCKLE accounted for 95% of the variance (RMSD # 9.04).
Unlike all previous simulations, BUCKLE’s causal strength esti-
mate of the unobserved cause was preventative (i.e., negative) in
the Insufficient condition (qU # –5.07), whereas it remained
positive in the Unnecessary condition (qU # 35.75; see Figure 15).

It should also be noted that, like participants’ judgments,
BUCKLE’s estimate of the unobserved cause was only weakly pre-
ventative in the Insufficient condition. According to BUCKLE (see
Appendix), even when qU is small (e.g., –.01) and qO is large (e.g.,
0.9), the probability of U being present will be only slightly greater
than chance (e.g., .52). It is only when the perceived strength of the
observed cause is near maximal that OE! observations will strongly
implicate the presence of the unobserved cause (e.g., if qO # .999 and
qU # –.01, then P(U # 1) # .92). Thus, BUCKLE makes the intuitive
suggestion that the strength of the observed cause will predict the
magnitude of the influence of OE! observations on unobserved cause
judgments. If, as Schulz and Sommerville (2006) suggested, their
preschoolers believed the observed cause to be absolutely sufficient,
they naturally would have inferred the influence of a strong preven-
tative unobserved cause.

To summarize, BUCKLE argues that in Experiments 1–3, OE!
observations did not lead learners to perceive the unobserved cause
as preventative, because OE! observations could have been due to
weak qO or negative qU. When pretraining in Experiment 5 estab-
lished O to be a strong generative cause, participants inferred a
preventative unobserved cause from OE! observations. BUCKLE
also explains why OE! observations led to only weakly preventative
causal judgments of the unobserved cause. Only when the ob-
served cause is nearly absolutely sufficient (perhaps as in the
beliefs of preschoolers; Schulz & Sommerville, 2006) will the
unobserved cause be perceived as strongly preventative.

General Discussion

The data reported above suggest that people are able to learn
about unobserved causes. Current models of causal learning appear

unable to account for this behavior even when amended with
additional assumptions. In contrast, the model proposed here,
BUCKLE, appears capable of explaining a variety of unobserved
cause learning phenomena. BUCKLE embodies a simple two-step
process for learning in the presence of unobserved causes. The first
step is to compute how likely the unobserved cause is to be
present. This inference is made using information available in the
environment (e.g., the state of observed causes and effects), as well
as empirically derived beliefs (e.g., beliefs about the strengths of
the causes). After this inference is made, there is no longer any
missing information; all causes are believed to be present with
some probability. The second step is to learn about the underlying
causal relationships. To do this, BUCKLE makes a prediction
about how likely the effect is to be present given the currently
available information (e.g., the state of observed and unobserved
causes and effects and beliefs about the causes’ strengths). This
inference allows BUCKLE to compare its beliefs about how the
world operates (i.e., the probability inference) with the actual
operation of the world (i.e., whether the effect actually occurred).
Errors in this step’s inference then form the basis of learning.
Despite its relative simplicity, BUCKLE appears to accurately
capture a significant variety of aspects of people’s cause learning.

Our first main finding is that people provided systematic estimates
about strengths of unobserved causes, a finding that several prominent
models of causal induction (e.g., !P) cannot explain. Second, as
predicted by BUCKLE, people’s estimates of the likelihood that an
unobserved cause is present on each trial were varied and sensitive to
both the current observation and beliefs about the causal strengths
held during that trial. Third, people’s unobserved cause learning was
sensitive to trial order, a finding that can be explained only by iterative
models such as BUCKLE. BUCKLE was also able to account for the
fact that participants did not necessarily judge the unobserved cause to
be preventative in the presence of OE! observations, a finding that
appears to contradict previously reported findings in children (Schulz
& Sommerville, 2006). However, we were able to use BUCKLE to
infer what the underlying developmental difference might be and
design a situation that elicited preventative judgments, providing
further evidence in support of BUCKLE’s account and reconciling
BUCKLE with the previous findings.

BUCKLE’s Assumptions

BUCKLE’s performance, as described throughout the present
article, is the result of an array of assumptions, some of which are
made to represent specific causal systems used in the experiments
and others concerning how causal inferences would proceed. Here,
we briefly outline the assumptions underlying the current simula-
tions to illustrate that representational assumptions are inter-
changeable whereas processing assumptions are meant to be psy-
chological claims.

Representational assumptions. We have assumed a particular
parameterization: Causes combine in the manner of a noisy-OR/
noisy-AND-NOT. This assumption has received much recent sup-
port (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005) and is
intuitively appropriate given the stimuli we have used here. Given
other situations, however, other parameterizations would be more
appropriate (e.g., Waldmann, in press). For example, the overall
temperature of a room might be the summed result of multiple
sources of heat (e.g., sunlight, heater, body temperature), as R-W

Figure 15. Causal strength judgments from Experiment 5. Error bars
indicate standard errors. Diamonds represent estimates made by BUCKLE
(bidirectional unobserved cause learning).
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assumes. In such cases, we would expect that people’s behavior
would change. BUCKLE can easily be changed to reflect the new
parameterization. The result would be a two-step algorithm in
which the first step replaces the missing presence/absence data (the
equations in the Appendix would change) and the second step is
equivalent to R-W’s learning rule.

In addition, we have performed the current simulations under
the simplified assumption that there are no alternative causes
(other than the single unobserved cause). As mentioned above, we
are not committed to this assumption as a psychological claim and
instead suggest that it would be highly influenced by experimental
instruction, domain, and background knowledge. Again, only a sim-
ple modification of BUCKLE would be required to make changes in
that assumption. Nevertheless, it is interesting to note that when our
participants were not explicitly told to make this assumption (Exper-
iment 2), the pattern of judgments did not change. Further empirical
work will be required to determine what shapes learners’ beliefs about
background causes and what their default assumptions are.

Another interchangeable, representational assumption made in
the current simulation of BUCKLE is about specifics of how the
occurrence of the unobserved cause is inferred. First, when utiliz-
ing Bayes’s theorem to compute the probability that the unobserved
cause is present on each trial (BUCKLE’s Step 1), we used a uniform
prior of P(U # 1 | O # 1) # P(U # 1 | O # 0). This is a simplistic
assumption, but it still allowed BUCKLE to account for more than
90% of the variance in people’s probability judgments. Here again,
we expect that the experimental methodology and background knowl-
edge will likely influence the prior required to successfully model
people’s behavior, but uniform priors seem to be reasonable defaults.

Second, we have assumed that this prior does not change over
the course of learning. This is likely a more surprising assumption
because the posteriors computed on previous trials should intu-
itively influence the prior on subsequent trials. However, this
seems not to be necessary, at least in simulating the current
experiments. There are two pieces of evidence for this claim. First,
in Experiment 3, participants’ trial-by-trial probability judgments
for a given trial type showed very little change over time (see
Luhmann, 2006, for details). If the prior were to change with
experience, one would expect these judgments (i.e., the posteriors)
to change as well (though how much change to expect could vary).
Second, we have simulated the entire set of experiments using a
version of BUCKLE in which the prior was updated during learn-
ing. These modifications caused BUCKLE to deviate from both
participants’ causal strength and trial-by-trial probability esti-
mates. Furthermore, Hagmayer and Waldmann (2007) reported
similar results. Their participants were asked to provide judgments
of either the prior—for example, P(U # 1 | O # o)—or the
posterior—for example, P(U # 1 | O # o, E # e). Whereas
judgments of the posterior varied depending on the input, judg-
ments of the prior “hardly showed any systematic relation to the
data” (Hagmayer & Waldmann, 2007, p. 351). Taken together,
these findings suggest that fixed priors may be a useful way of
characterizing our learners’ behavior.

Processing assumptions. Much more critical to the current
findings are BUCKLE’s assumptions about processing. These
assumptions also served as a framework for distinguishing the
existing models of causal learning, as outlined in Table 1.

First, BUCKLE was conceived as an iterative learning model.
This aspect of BUCKLE’s process appears to be necessary to

explain the current results (e.g., the order effect in Experiment 4),
though one could imagine a similar model operating over large
amounts of data at once (see below for examples).

Second, as we saw throughout the evaluation, the models that
provided or assumed some value of P(U # 1) (e.g., the amended
power and R-W models and BUCKLE) were able to provide
causal strength estimates of unobserved causes, whereas those that
did not estimate P(U # 1) could not (e.g., power models, !P).
Given that people were willing to provide systematic estimates of
the causal strength of unobserved causes, providing some estimate
of P(U # 1) appears to be more psychologically valid.

Third, assuming a fixed value of P(U # 1) is not sufficient for
accurately mirroring participants’ behavior. Instead, BUCKLE’s
dynamic probability estimates, influenced by values of O and E as
well as qU and qO, were able to provide better quantitative and
qualitative fits to our participants’ behavior than those provided by
static estimates of P(U # 1).

Unlike the representational assumptions outlined above, these
last three processing assumptions are indispensable to BUCKLE’s
operation. Removing or drastically altering these portions of
BUCKLE would result in a qualitatively different model. How-
ever, the current experiments provide significant evidence to sup-
port these aspects of BUCKLE as psychologically valid.

BUCKLE and the EM Algorithm

As mentioned in the introduction, the process described by
BUCKLE has substantial similarities with the EM algorithm (Demp-
ster et al., 1977). The EM algorithm is designed to accomplish
learning despite incomplete data. EM then estimates the values of
both the missing data and the parameters. The essential component of
EM’s operation is an alternation between two steps. The first step is
to compute a likelihood distribution over all possible values of the
missing data based on the current estimates of the parameters. This
step essentially acts to “fill in” any missing data. The second step is
to adjust the value of the parameters being learned (e.g., the strengths
of the causes) on the basis of the inference-amended data that were
generated in the first step. Alternating between these two steps has
been shown to converge on locally maximal parameter estimates
(Dempster et al., 1977, provided the proof).

The operation of the EM algorithm is obviously quite similar to
that of BUCKLE. Both algorithms perform two steps: one to
replace missing data and one to update the parameters of interest
(qO and qU). Both models perform each step using the results from
the previous step, essentially ignoring the fact that there is missing
data (and that the results from the previous steps are only approx-
imate). Unlike BUCKLE, the original EM algorithm was designed
to perform its two-step procedure over an entire data set at once.
However, researchers have developed versions of EM that operate
incrementally (e.g., Bradley, Fayyad, & Reina, 1998; Suematsu,
Maebashi, & Hayashi, 2004; see also Neal & Hinton, 1998). The
only difference between BUCKLE and a full-blown incremental
EM algorithm is that BUCKLE only considers the current obser-
vation when updating the causal strength estimates. However, the
historical roots of BUCKLE’s trial-by-trial strength updating (e.g.,
Rescorla & Wagner, 1972) strongly suggest that such updating is
psychologically plausible. Future theoretical work will be required
to evaluate the consequences of these differences.
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Finally, it should be noted that BUCKLE is not the only exam-
ple of EM to be applied to cognitive processes. Fried and Holyoak
(1984) put forth a model (the category density model) of unsuper-
vised category learning that is isomorphic to EM. The missing data
in their study were the exemplar-category assignments (i.e., the
traditional feedback in category learning experiments), and the
estimated parameters were the category prototypes (plus category
variability). The success of BUCKLE and the category density
model suggests that the EM algorithm may characterize a cogni-
tive strategy for dealing with missing data across many domains
(e.g., category learning, causal learning).
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Appendix

Probability Computations for BUCKLE

Table A1 includes an explanation of the notation used
throughout the article along with their initial values (e.g., at the
beginning of an experiment) and how they change during the
course of learning. Table A2 includes the computations that
allow BUCKLE to replace the information missing from the
input. These expressions are simply Bayes’ theorem (below)
expanded assuming the noisy-OR/noisy-AND-NOT parameter-
ization (see the main text for details). Table A3 includes the
best fitting parameter values in each of the reported experi-
ments.

P$U ! 1!O ! o,E ! e%

!
P$E ! e!O ! o,U ! 1% ! P$U ! 1!O ! o%

+P$E ! e!O ! o,U ! 0% # P$E ! e!O
! o,U ! 1)]!P$U ! 1!O ! o%

Assuming that P(U # 1!O # 0) # P(U # 1!O # 1):

P$U ! 1!O ! o,E ! e%

!
P$E ! e!O ! o,U ! 1%

P$E ! e!O ! o,U ! 0% # P$E ! e!O ! o,U ! 1%
.

Table A1

Parameters Used by BUCKLE Along With Descriptions of Their Nature and Use

Name Initial value Source Description

O N/A Input Presence/absence of the observed cause on the current observation
E N/A Input Presence/absence of the effect on the current observation
qO 0 Learned Causal sufficiency of the observed cause
qU 0 Learned Causal sufficiency of the unobserved cause

P(U!O # 1) .5 Static Prior likelihood of the unobserved cause being present during O observations
P(U!O # 0) .5 Static Prior likelihood of the unobserved cause being present during O! observations

&O N/A Fit to data Learning rate associated with the observed cause
&U N/A Fit to data Learning rate associated with the unobserved cause
' .5 Static Learning rate associated with the effect

Table A2

Expressions Used to Replace Missing Information About Unobserved Causes

Situation P(U # 1!O # o, E # 1) P(U # 1!O # o, E # 0)

qo $ 0, qu $ 0
$o ! qO% # qU " $o ! qO ! qU%

$o ! qO% # +$o ! qO% # qU " $o ! qO ! qU%,

1 " +$o ! qO% # qU " $o ! qO ! qU%,

+1 " $o ! qO%, # /1 " +$o ! qO% # qU " $o ! qO ! qU%,0

qo . 0, qu $ 0
qU ! +1 " $o ! qO%,

0 # /qU ! +1 " $o ! qO%,0
! 1

1 " /qU ! +1 " $o ! qO%,0

1 # +1 " /qU ! +1 " $o ! qO%,0,

qo $ 0, qu . 0
o ! qO ! $1 " qU%

$o ! qO% # +o ! qO ! $1 " qU%,

1 " +o ! qO ! $1 " qU%,

+1 " $o ! qO%, # /1 " +o ! qO ! $1 " qU%,0

qo . 0, qu . 0
0

0 # 0
! undefined

1
1 # 1

! .5
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Table A3

Best-Fitting Values of &O and &U in Each Experiment

Experiment &O &U

1A 0.269 0.229
1B 0.280 0.199
3 0.218 0.176
4 0.122 0.222
5 0.273 0.194

M (SD) 0.234 (0.066) 0.204 (0.022)
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Correction to Nelson (2005)

In the article “Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and
Information Gain,” by Jonathan D. Nelson (Psychological Review, 2005, Vol. 112, No. 4, pp.
979–999), there was a typographical error in the data for percentage of females with short and long
hair in Table 13 on p. 992. The data should indicate that 7% of females had short hair and 93% of
females had long hair. The calculations and discussion in the article were based on these correct
percentages.
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