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Suppose one observes a correlation between two events, B and C,
and infers that B causes C. Later one discovers that event A explains
away the correlation between B and C. Normatively, one should
now dismiss or weaken the belief that B causes C. Nonetheless, par-
ticipants in the current study who observed a positive contingency
between B and C followed by evidence that B and C were indepen-
dent given A, persisted in believing that B causes C. The authors
term this difficulty in revising initially learned causal structures
‘‘causal imprinting.’’ Throughout four experiments, causal imprint-
ing was obtained using multiple dependent measures and control
conditions. A Bayesian analysis showed that causal imprinting
may be normative under some conditions, but causal imprinting
also occurred in the current study when it was clearly non-norma-
tive. It is suggested that causal imprinting occurs due to the influ-
ence of prior knowledge on how reasoners interpret later evidence.
Consistent with this view, when participants first viewed the evi-
dence showing that B and C are independent given A, later evi-
dence with only B and C did not lead to the belief that B causes C.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Imagine you are a scientist investigating the causes of myopia (near-sightedness). You discover a
correlation between using a nightlight as a child and developing myopia as an adult, and based on this
correlation, you infer that nightlights are a cause of myopia. To support this inference, you also devel-
op a theory that explains how light exposure during the evening could alter the eye’s physiology
(Quinn, Shin, Maguire, & Stone, 1999). A year later, however, new evidence emerges that a third fac-
tor—whether the child’s parents have myopia—explains away the original correlation (Gwiazda, Ong,
c. All rights reserved.
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Held, & Thorn, 2000). Parents who have myopia both tend to use a nightlight in their child’s room and
tend to pass along myopia to their children. For children whose parents do not have myopia, the ori-
ginal correlation disappears, undermining the belief that nightlights are a cause of myopia.

Examples like the one above (taken from a series of articles published in the journal Nature) are
commonplace in science and in everyday causal reasoning. Presumably due to their abundance, stu-
dents are repeatedly told in research methods and statistics courses that correlation does not imply
causation and that they should look out for a hidden common cause that accounts for the observed
correlation. Yet, as noted in the above examples, people frequently neglect such warnings. The main
question we address in the current work is: Given that people frequently do infer causality from cor-
relations without considering potential common causes, what happens to those beliefs when a hidden
common cause is revealed?

One possibility is that people reconsider the initial evidence in light of the common cause, which
leads them to discard their initial belief. For example, as the scientists did in the myopia scenario,
reasoners might use their knowledge of parent myopia to discard their belief that nightlights cause
child myopia. We refer to this behavior as belief revision. Another possibility is that reasoners do not
reconsider the initial evidence, but instead maintain their initial belief and merely add the common
cause relations. We refer to this behavior as causal imprinting, based on the idea that the initial
evidence imprints a belief into the reasoner’s mind, making it difficult to dispel despite the later
evidence.

In what follows, we first review previous studies on causal structure learning and discuss the rea-
sons to expect either belief revision or causal imprinting. Then, we present our empirical framework
for distinguishing between these two outcomes, including a Bayesian analysis of the data we present
to participants. Our Bayesian analysis shows under what conditions causal imprinting is normative,
and the current study empirically tests these conditions.

1.1. Causal structure learning

Many previous studies have examined how people use covariation evidence to judge whether two
events are causally related (Buehner, Cheng, & Clifford, 2003; Cheng, 1997). For example, one can use
the data from a number of medical patients to judge whether taking a pill causes or prevents a head-
ache. When learning only a single causal relation, people tend to give approximately normative judg-
ments, consistent with statistical models of causal inference (Buehner et al., 2003; Griffiths &
Tenenbaum, 2005, 2009; Rottman, Ahn, & Luhmann, 2011).

However, many causal judgments involve situations where there are more than just two events,
and in these tasks people behave less normatively (Lagnado & Sloman, 2004, 2006; Steyvers, Tenen-
baum, Wagenmakers, & Blum, 2003). For example, Steyvers et al. (2003) found that fewer than half
of their participants could distinguish a common cause structure (A causes B and C) from a common
effect structure (B and C cause A) based on observations alone. Inferring the causal relations between
multiple events is difficult because it requires verifying which events are merely correlated, and which
are genuinely causally related (Pearl, 2000). As in the myopia example, a set of three events may all be
correlated with each other because one is the common cause of the other two. In this case, one may
perform numerous computations to verify the true causal structure: first, the overall contingency be-
tween each pair of events, and then, the conditional contingency of each pair of events, given the value
of the third event (Scheines, Spirtes, Glymour, & Meek, 1994).

Despite these apparent difficulties, people do have knowledge of complex, real world causal sys-
tems, such as economic trends, weather patterns, and social hierarchies. Such learning may be possi-
ble because people assemble their causal models piece by piece, learning one relation at a time, rather
than attempting to learn them all at once (Ahn & Dennis, 2000; Fernbach & Sloman, 2009).

If the learning of causal structures often occurs incrementally, then it is crucial to know how people
update their initial causal beliefs when faced with new evidence. This is especially true when the new
evidence reveals previously hidden causal factors that lead to different interpretations of the initial
evidence. Though some work has addressed how people reason about hidden causes (Rottman
et al., 2011), the current studies are the first to examine how learners update their beliefs when these
hidden causes are revealed.
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1.2. Belief revision or causal imprinting

Now we return to the myopia example, which illustrates the paradigm we will use to discriminate
belief revision and causal imprinting. To rephrase this example using the abstract notations to be used
in this paper, a learner is first presented with a positive contingency between events B and C, which
leads the learner to believe that B causes C.1 Later the learner is presented with contingencies between
events B, C, and a new event A, which was not observed in the first phase. These data suggest that B is
independent of C, conditional on A. Our primary question regards how people respond to the later evi-
dence where the status of A was known. Do they engage in belief revision, reinterpreting the initial evi-
dence based on the contingency patterns from the later evidence, or do they avoid such reinterpreting
and instead show causal imprinting? The prior literature suggests that both outcomes are plausible.

First we consider reasons why people may show belief revision in the above paradigm. Note that in
order for belief revision to take place based on the later evidence, a learner should first be able to no-
tice that B and C are independent, conditional on A. Indeed, previous work has shown that people are
adept at noticing when two events are spuriously correlated due to a confounding cause (Spellman,
1996; Waldmann & Hagmayer, 1995). For instance, Spellman (1996) had participants rate whether
two liquids, one red and one blue, caused or prevented flower growth. Both liquids were correlated
with flower growth, but the liquids were also confounded with one another. When controlling for
the blue liquid, the red liquid was actually independent of flower growth. Learners seemed aware
of this confound, as they rated the causal strength of the red liquid as much lower than the blue liquid
(and generally null). Thus, these results suggest that people are sensitive to conditional contingencies.
(For more direct demonstrations of common-cause learning, see the results from the control condi-
tions reported in the current experiments.) Given that people are able to adjust their causal strengths
ratings between two events based on conditional contingencies, the question is now whether they use
this type of data when it appears more recently (i.e., during the second half of learning) to revise their
initial beliefs about the two correlated effects.

Studies on the learning of causal relations between just two events have shown that causal
strength estimates are often affected more by recent evidence than earlier evidence (Fernbach &
Sloman, 2009; Glautier, 2008; Lopez, Shanks, Almaraz, & Fernandez, 1998). For instance, participants
in Fernbach and Sloman (2009, Experiment 2) viewed five trials of contingency data between three
events, and the fourth trial showed evidence inconsistent with a causal relation implied by the earlier
trials. Participants tended to exclude the relation implied by the earlier trials in their causal judg-
ments, showing a recency effect.

Though Fernbach and Sloman (2009) used learning sequences with only five trials, others have
shown recency effects with much larger data sets, more similar to our myopia example. For example,
Lopez et al. (1998) manipulated the order of two consecutive blocks, one in which an event (say, X)
was a good predictor of another event (say, Y) and another in which X was a poor predictor of Y. Par-
ticipants rated the relationship between X and Y to be stronger when they viewed that X was a good
predictor recently than when they viewed that X was a poor predictor recently, suggesting that they
had weighted the recent evidence more heavily. These studies suggest that in the context of the myo-
pia example, people may give more weight to recent evidence, leading to weaker belief that B causes C
after observing that A causes both B and C.

Not only do people give more weight to recent evidence, they also sometimes spontaneously revise
their prior beliefs in light of more recent evidence. For example, in backward blocking paradigms
(Shanks, 1985) learners first observe that two cues, X and Y, are positively associated with an outcome,
Z. Then in a second phase, they observe that X is also positively associated with Z in the absence of Y.
Measures of the learned association between Y and Z tend to decrease from the first phase to the sec-
ond, suggesting revision. Adults, children, and even rats show this tendency (Miller & Matute, 1996;
Shanks, 1985; Sobel, Tenenbaum, & Gopnik, 2004). Along with the previous studies, these findings
suggest that people may be willing to revise their prior beliefs based on later evidence.
1 Positive covariation between B and C can also imply that C causes B, but for simplicity, we only consider the case in which
people can readily infer only one causal direction, as in the myopia example where B temporarily preceded C.
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Nonetheless, we predicted that people would show causal imprinting rather than belief revision,
based on a simple principle that people learn things in order to use that knowledge in the future. Thus,
once a person acquires a certain causal belief, it will be used to interpret later evidence (e.g., Luhmann
& Ahn, 2011), including evidence that should be used to revise that belief. For example, in our para-
digm the initial evidence will lead to a belief that B causes C, which will then lead to biased interpre-
tations of the later evidence. In effect, this would delay the realization that B and C are independent,
given A, and reduce the likelihood that learners would reinterpret the initial evidence based on the
later evidence. In general, we claim that this use of prior knowledge creates an asymmetry in how ini-
tial and later pieces of evidence are used in learning. The initial evidence will have a greater impact
because it leads to the formation of prior beliefs, which then affect how later evidence is interpreted.

There are a number of previous demonstrations of such an asymmetry in learning and reasoning
tasks. For instance, in the well-known studies of ‘‘confirmation bias’’, participants often ignore or
rationalize later contradictory evidence in an attempt to confirm their original hypotheses (for a re-
view, see Nickerson, 1998). Prior beliefs also affect the learning of categories and concepts. For exam-
ple, the first category we assign to an item may affect what features and causal relations we encode
about the item, and these may bias us from seeing other possible categorizations (e.g., Moreau,
Lehmann, & Markman, 2001).

Also, in associative learning, studies of forward blocking (Kamin, 1968) show that prior associations
between a cue and an outcome impede the learning of additional associations between other cues and
the same outcome. Applied to our paradigm, if people first infer that B causes C, this may block their
learning that A causes C, as A and B represent two alternative causes for the same effect (Waldmann &
Holyoak, 1992). Failing to learn that A causes C would impede learning of the common cause structure
that A causes B and C (the true structure in our paradigm), and if the common cause structure is not
inferred, then there is no basis for discounting the correlation between B and C.2

Studies on the learning of causal relations in particular have also found primacy effects, where ini-
tial evidence influences causal judgments more heavily than later evidence. For instance, Dennis and
Ahn (2001) showed participants a set of data where the overall contingencies between two events
changed from the first half to the second half (either from a positive contingency to a negative contin-
gency, or the reverse). Collapsing across the two halves, the data revealed no contingency between the
candidate cause and the effect. However, causal strength judgments taken at the end of learning were
positive when a positive contingency was presented in the first half, and negative when a negative
contingency was presented in the first half. That is, people showed a primacy effect (see also Hogarth
& Einhorn, 1992).

More relevant to our claims regarding interpretation is a recent study by Luhmann and Ahn (2011)
showing that primacy effects are due in part to learners forming a causal belief based on the first half
of the data, which then creates a bias when interpreting the second half. For instance, they found that
when a learner believed that one event X caused another event Y, a later trial in which X was followed
by the absence of Y was interpreted as the operation of a separate inhibitory cause or lack of enabling
condition, but not as evidence that X prevents Y. In addition, Marsh and Ahn (2006) argued that the
aforementioned recency effects in Lopez et al. (1998) were obtained because the task was too com-
plex, inhibiting learners’ ability to form and maintain the initial causal belief.

While primacy effects (Dennis & Ahn, 2001) and dynamic interpretations during causal and cate-
gory learning (Luhmann & Ahn, 2011; Moreau et al., 2001) are consistent with the current claim, none
of these studies necessarily imply that primacy effects will occur in the myopia scenario, due to qual-
itative differences in this scenario in the way that the later evidence contrasts with earlier evidence. In
the previous studies demonstrating primacy effects in causal learning for instance (e.g., Dennis & Ahn,
2 The relations between forward blocking and causal imprinting are more conceptual than literal. Blocking has been shown in a
variety of ways (e.g., Chapman & Robbins, 1990; Dickinson, Shanks, & Evenden, 1984; Kruschke & Blair, 2000), but in typical studies
the two competing cues are confounded, such that the later cue cannot increase predictive accuracy (Rescorla & Wagner, 1972). In
contrast, events A and B in our experiments were not confounded, and adopting A as a cause of C would have increased predictive
accuracy. Nonetheless, blocking may occur in a more general sense in our scenario. For example, the initial account for the B–C
contingency (i.e., B is the cause of C) may block the learning of the latter common cause account. To our knowledge, such forms of
blocking have not been empirically demonstrated.
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2001), participants viewed two consecutive blocks of data showing opposite contingency patterns be-
tween the same two events. In contrast, in the current paradigm, like the myopia scenario, the contin-
gency between the two initial events, B and C, does not change over time, but instead, a hidden
variable is revealed that leads to an alternative interpretation of that contingency. In cases like this,
people may be more open to revising their initial beliefs as they should later realize that it was based
on incomplete information.

To summarize, one set of studies (e.g., learning of conditional contingencies, backward blocking,
and recency effects in causal learning) suggests that people may show belief revision rather than cau-
sal imprinting. On the other hand, another set of studies (e.g., confirmation bias effects, forward block-
ing, primacy and interpretation effects in causal and category learning) suggests that people may have
a bias to maintain their initial beliefs when learning causal structures. That is, people may show causal
imprinting rather than belief revision. Indeed, some investigators have even found evidence for both
primacy and recency effects in the same experiment (Danks & Schwartz, 2005, 2006). Most impor-
tantly, none of the previous studies have utilized a paradigm like the one depicted in the myopia sce-
nario. As discussed earlier, the later discovery of a common cause is recurrent in real life and scientific
reasoning, and this sequence of events seems more ecologically valid than the method of joining two
blocks of data with opposing contingencies used in studies of primacy and recency effects. Given that
belief revision and causal imprinting are each consistent with some prior research, and that none of
the previous paradigms directly apply to the current one, new empirical tests are needed to distin-
guish between these hypotheses.

2. The current studies

In this section, we describe the key aspects of the current studies in order to derive the specific pre-
dictions of causal imprinting and belief revision. Participants observed sets of contingency data and
then judged three possible causal relations among events A (Ablique virus), B (Burlosis condition),
and C (Caprix condition), as shown in Fig. 1. Specifically, they viewed 40 trials (see the left panel of
Fig. 2), each depicting an individual person’s status on the two or three variables, depending on the
condition.

The two critical conditions utilized two blocks of contingency data. The joint frequency distribu-
tions across the 20 trials in each block are summarized in Fig. 2. One block of data depicted only B
and C (henceforth, the BC block), and participants were told nothing about event A. The BC block cor-
responds to a case in which a researcher observes a positive contingency between the use of night-
lights and development of myopia in children. A common measure of contingency, DP (Jenkins &
Ward, 1965), reveals a positive relation between events B and C.

The other block depicted A, B, and C (henceforth, the ABC block) and corresponds to a case in which
a researcher also recorded whether the children’s parents had myopia. In this block, the overall DP be-
tween B and C was identical to the BC block. However, for trials where A was present, and separately
for trials where A was absent, the DP between B and C was near zero. Thus, the data from the ABC
block suggested that B was not a cause of C. Additionally, the DP between A and B, and between A
and C, was highly positive, suggesting that A was the common cause of B and C.

To distinguish between belief revision and causal imprinting, we manipulated which block(s) par-
ticipants viewed: either the BC block followed by the ABC block (henceforth, the BC–ABC condition), or
Fig. 1. Potential causal relations among events A, B, and C that participants in Experiments 1–4 had to judge by viewing
contingency data.



Fig. 2. Contingencies used in Experiments 1–4 for the BC and ABC blocks. The table on the left shows presence (value 1) or
absence (value 0) of the three events on each of the 20 trials. The BC and ABC blocks were identical except that in the BC block,
values of A were missing (indicated by gray shading in the table). Calculations of DP are provided for all causal relations
depicted in Fig. 1. The subscripts used with DP (e.g., DPBC) indicate that it is a measure of the second factor (C) being contingent
on the first factor (B). For the ABC block, DP for the B-causes-C relation is calculated separately for trials with A present and with
A absent, indicating the lack of evidence for this relation when conditionalizing on A.
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two consecutive ABC blocks (henceforth, the ABC–ABC condition). The second ABC block was included
to control for the total sample size. Then, after viewing the contingency data, participants judged
which of the causal relations they believed were true (Experiment 1) or how strongly each of the
causes led to their effects (Experiment 2), yielding both holistic, structural judgments and more
fine-tuned, strength judgments (see Griffiths & Tenenbaum, 2005).

We now present our predictions for the two conditions. First, we predicted that participants in the
ABC–ABC condition would infer that A causes both B and C, and that B does not cause C (e.g., Spellman,
1996; Waldmann & Hagmayer, 1995). We also acknowledge that conditionalizing on a third variable is
difficult and that some learners may fail to conditionalize on A (e.g., Steyvers et al., 2003), or perhaps
do so for only some of the trials, resulting in a weak belief in B-causes-C. Both of these structures are
illustrated in the top left panel of Fig. 3, where we summarize our predictions.

Second, if learners in the BC–ABC condition engage in belief revision, then we predicted that they
would give similar causal judgments to those in the ABC–ABC condition. For example, they might
assume that the contingencies from the BC block would have been similar to the ABC block if the val-
ues of A were visible. In this case, they would likely reinterpret the BC block based on the contingency
patterns from ABC block and revise their initial belief that B causes C.

Third, if learners in the BC–ABC condition show causal imprinting, then they should be more likely
to believe that B causes C than those in the ABC–ABC condition. This would occur if the initial evidence
truly imprints learners with the belief that B causes C, making them hesitant to revise this belief.3
3 Another reason that the causal imprinting pattern may occur is if learners are simply uncertain about the missing values of A in
the BC block even after they observe the ABC block. If so, they should avoid reinterpreting the BC block, meaning that the data from
this block would still support the belief that B causes C. We address this possibility in the modeling section below and in
Experiment 2.



Under the ABC-ABC condition or belief revision 

Under causal imprinting 

Fig. 3. A summary of the descriptive predictions according to belief revision or for the ABC–ABC condition (above) and causal
imprinting (below). The dotted line represents a specifically weak causal relation.
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Finally, let us consider the causal inferences regarding event A if causal imprinting occurs. Because
A positively correlates with B and C in the ABC block, participants will have to account for these con-
tingencies. There are two ways for learners in the BC–ABC condition to account for the positive A–B
and A–C contingencies, while also maintaining their belief that B causes C. One is to infer that A causes
both B and C, in addition to B strongly causing C (i.e., the bottom left panel of Fig. 3). Another is to infer
that A causes only B, and that B strongly causes C, resulting in a causal chain structure (i.e., the bottom
right panel of Fig. 3). This structure may occur due to blocking of the belief in A causes C, given the
prior learning of B causes C (Waldmann & Holyoak, 1992). Note that even though the chain excludes
A-cause-C, it still accounts for all observed pairwise contingencies, because A would also share a po-
sitive contingency with C due to the causal chain relationship from A to B to C. Although this structure
and the previous one do account for the additional positive contingencies between A and B, and A and
C, both ignore the fact that the contingency between B and C disappears when conditionalizing on A.

To summarize, learners in the ABC–ABC condition and those in the BC–ABC condition engaging in
belief revision should infer the common cause structure, or all three causal relations endorsing
B-causes-C as only a weak causal relation. Under causal imprinting, however, learners should infer
all three causal relations or the causal chain structure, both with a strong B-causes-C relation. Thus,
comparing the top and bottom panels of Fig. 3, the two structures that best distinguish between belief
revision and causal imprinting are the common cause structure and the causal chain structure. And
most critically, the endorsement of B-causes-C should be generally much stronger under causal
imprinting than under belief revision (or for the ABC–ABC condition).
3. Bayesian analyses

3.1. Preview of Bayesian analyses

In this section, we show how a Bayesian learner would assign likelihoods to the various possible
causal structures, given the data in the ABC–ABC and BC-ABC conditions. As in previous literature
(Anderson, 1990; Griffiths & Tenenbaum, 2009), we treat Bayesian analyses as providing rational, or
normative standards for human judgments. For readers who may wish to skip the details of the anal-
yses, we first provide a brief overview of the results and the normative criteria they suggest.

The Bayesian analysis of the ABC–ABC condition reveals that the common cause structure is most
likely, followed by the structure with all three causal relations. These normative predictions are the
same as the descriptive predictions shown in Fig. 3.
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In contrast, the analysis of the BC–ABC condition differs depending on how we assume that the
learner utilizes the data from the BC block. We considered three general methods for utilizing the
BC block, two normative and one boundedly normative.

The first normative method corresponds to belief revision, where the learner reinterprets the BC
block based on the contingencies from the ABC block, assuming that both the BC and ABC block are
representative samples of the general contingency patterns between events A, B, and C. This assump-
tion is sensible, given that the contingency between B and C is identical across the two blocks. Thus,
the learner can assume that the BC block would have been similar (or identical) to the ABC block had
the values of A been visible. The results from such an analysis would thus be similar (or identical) to
the analysis of the ABC–ABC condition, and the normative predictions for the BC–ABC condition would
differ from the causal imprinting predictions summarized in Fig. 3. Experiment 1 tests whether people
deviate from these normative predictions.

The second normative method corresponds to a case where the learner remains uncertain about the
missing values of A in the BC block, and thus, avoids inferring any specific values of A based on the con-
tingencies from the ABC block, even after observing the ABC block. Instead, the learner considers both
possible values of A and collapses across these to determine the overall likelihood of the BC trials. This is
normative if the learner cannot be sure that the BC block would have been similar to the ABC block.
When using this method, the common cause structure is slightly less likely than in the ABC–ABC anal-
ysis, and both the causal chain and the structure with all three relations are slightly more likely than the
ABC–ABC analysis. In other words, the normative inferences from the BC–ABC condition assuming
uncertainty for A values in the BC block result in a minor tendency towards the causal imprinting pat-
tern shown in Fig. 3. Critically, however, even this small shift should occur only if a learner is truly
uncertain about the missing A values after viewing the ABC block. Experiment 2 tests this possibility.

The third method, which we termed a ‘‘bounded’’ Bayesian method, is similar to the fully Bayesian
method in that the learner remains uncertain about the missing values of A in the BC block even after
observing the ABC block. However, unlike the fully Bayesian method, the bounded Bayesian learner is
cognitively limited, and thus during the BC block the learner only infers whether or not B causes C,
without considering both possible values of A. This means that the learner does not consider the pos-
sibility that the positive B–C contingency during the BC block may have been due to a common cause.
Consequently, the bounded Bayesian analysis leads to a stronger belief about B-causes-C during the BC
block than does the fully Bayesian analysis, which leads to the final inferences being much more sim-
ilar to causal imprinting than in the fully Bayesian analysis. However, as with the fully Bayesian anal-
ysis, the ability of this model to justify causal imprinting rests on a crucial assumption that the values
of A are uncertain during the BC block. Thus, if the missing values of A during the BC block were re-
vealed to be same as the values of the ABC block, then learners should not show causal imprinting as
predicted by our bounded Bayesian model. Experiment 2 tests this possibility.

3.2. Modeling methods

Our approach follows previous work on causal learning using causal graphical models, or ‘‘Bayes
nets’’ (Pearl, 2000), a powerful way to represent causal knowledge and perform related computations.
A Bayes net consists of nodes, which stand for events, and directed edges, which stand for causal rela-
tions between events. When a node becomes active (e.g., event A occurs), its effects also become active
(e.g., event B occurs) with some probability defined for their causal relation. These basic properties al-
low one to use Bayes nets to make statistical inferences, e.g., to compute the probability that a partic-
ular event (or set of events) will occur, the probability that a causal relation exists between two
events, or the likely strength of a causal relation (Cheng, 1997; Griffiths & Tenenbaum, 2005, 2009).

In this section, we use Bayes nets to infer the likelihoods of the causal relations depicted in Fig. 1,
given the data provided in our experiments. Inferences from a Bayes net are made according to prob-
ability theory. Bayes’ rule states that a learner’s prior belief in a particular causal hypothesis, or a set of
causal relations, hi, should be updated based on the data, D, in the following way:
PðhijDÞ ¼
PðDjhiÞPðhiÞP

iPðDjhiÞPðhiÞ
; ð1Þ



Table 1
The posterior probabilities of each causal structure, separately for the ABC–ABC condition and the three analyses for the BC–ABC
condition. Bolded values are maxima.

ABC–ABC (No missing values) 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.28
BC–ABC (Reinterpretation) 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.28
BC–ABC (Fully Bayesian) 0.00 0.00 0.00 0.56 0.00 0.00 0.03 0.41
BC–ABC (Bounded Bayesian) 0.00 0.00 0.00 0.01 0.00 0.02 0.18 0.79
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where P(D|hi) is the likelihood of the data according to hypothesis hi, and P(hi) is the prior probability
of hypothesis hi, or the degree of belief in hi before viewing the data. The numerator computes the
weighted likelihood of each hypothesis, and the sum in the denominator normalizes these weighted
likelihoods so that they sum to one. The result, P(hi|D), is the posterior probability of hypothesis hi after
observing data D.

Given the three causal relations shown in Fig. 1, there were eight possible hypotheses (see Table 1),
consisting of each possible combination of the causes. In our analyses, we set all P(h) to 1/8, represent-
ing the assumption that the hypotheses were equally likely before viewing the data.4

The data, D, in our experiments consist of multiple trials. In standard Bayesian inference, one com-
putes the posteriors by applying Bayes’ rule iteratively across trials. Specifically, the posterior for trial
t, P(hi|dt, . . . , d1), is used as the prior probability, P(hi), on trial t + 1. Conveniently, the result of this iter-
ative process is equivalent to setting P(D|hi) to the joint likelihood of all trials, given hypothesis hi. This
joint likelihood is simply the product of the likelihoods of all individual trials. Note that in computing
the product, the order in which the data are presented becomes irrelevant for Bayesian updating (see
Kruschke, 2006; Slovic & Lichtenstein, 1971).

We explain how we computed the likelihood P(dt|hi) using an example trial in which A and B are
present but C is absent. We compute the likelihood for the specific hypothesis ‘A-causes-C and B-
causes-C.’

First, we take the product of the likelihoods of each event being present or absent, given whether or
not the direct causes of those events were present or absent:
4 We
Sloman
Append

5 The
importa
Explora
PðdtjhiÞ ¼
Y

e2fA;B;Cg
PðejcauseseÞ; ð2Þ
where e represents the status of a given event (i.e., present or absent), and causese represents the sta-
tus of the direct causes of e indicated by hypothesis hi. In our example, this equals
P(A+)P(B+)P(C�|A+B+), where A+ and B+ indicate that A and B are present, and C� indicates that C is ab-
sent. In our example, hypothesis hi does not suggest any candidate causes of A and B, meaning that
P(A+) and P(B+) represent the probability that A and B are caused by some other event in the causal
background (i.e., an event other than A, B, and C).

Second, to compute the likelihood of an event being present, conditional on the status of its causes,
we used a noisy-OR function5:
PðeþjcauseseÞ ¼ 1� ð1� beÞ
Y

e2causese

ð1�mceÞcpresent ; ð3Þ
where c is a direct cause of e, mce is the probability that the causal mechanism from cause c to effect e
succeeds (the causal power; Cheng, 1997), cpresent is an indicator variable set to 1 when cause c is
also considered prior distributions reflecting a preference for hypotheses with either more or fewer causes (see Fernbach &
, 2009). These different priors did not fundamentally alter the relative differences between the model predictions (see
ix A).
noisy-OR function is a method for combining the influence of multiple causes when they lead to the same effect. An

nt alternative is the linear method (for discussion, see Griffiths & Tenenbaum, 2005), where P(e+|causese) = be + Rcmcecpresent.
tions of the model using the linear method produced similar results to those with noisy-OR (see Appendix A).
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present and 0 when c is absent, and be is the probability that event e is caused by an event in the causal
background.

Thus, according to the hypothesis ‘A-causes-C and B-causes-C,’ the likelihoods of the events in our
example are: P(A+) = 1 � (1 � bA), P(B+) = 1 � (1 � bB), and P(C�) = 1 � P(C+) = (1 – bC)(1 �mAC)
(1 �mBC). The joint likelihood of these events is: [1 � (1 � bA)][1 � (1 � bB)][(1 – bC)(1 �mAC)
(1 �mBC)].

To ensure that our results did not depend on any particular values of the b and m parameters, we
marginalized across these parameters using Monte Carlo (for a similar application, see Griffiths & Ten-
enbaum, 2005). Specifically, we drew 100,000 samples of the parameter set h = {bA,bB,bC,mAB,m-
CA,mCB}, each parameter drawn from a uniform distribution with values ranging from 0 to 1.6 With
each set of sampled parameters, hj (where j refers to the sample number) we computed the likelihood,
P(D|hj,hi), for each hypothesis. To approximate the likelihoods required by Eq. (1), P(D|hi), we took the
average of the sampled likelihoods, as follows:
6 We
2008).
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where m = 100,000. The likelihoods for all eight hypotheses were used to compute the posteriors of
each hypothesis according to Eq. (1).
3.2.1. Different methods of utilizing the BC block
In typical applications of causal Bayes nets, and in the ABC–ABC condition, the presence or absence

of all variables in question (i.e., A, B, and C) is specified on all trials. However, in the BC–ABC condition
the status of A was unknown during the BC block. We consider three different methods of utilizing the
BC block in light of the missing values of A. We also discuss under what circumstances each of these
models would be considered normative.

Our first normative method captures the belief revision approach. Under this method, the learner
assumes that the contingencies from the BC block would have been similar to the ABC block had the
values of A been visible. Accordingly, the learner reinterprets the BC block based on the evidence from
the ABC block. A simple way to apply this method in our case would be for the learner to assume that
the BC block was in fact identical to the ABC block, since the B–C contingencies were identical across
the two blocks.7 Note that this approach does not require an exact memory for the BC block, but rather,
only an assumption that if the learner were to re-view the BC block with the values of A visible, it would
appear identical to the ABC block. Thus, for this method the analysis was conducted using two ABC
blocks, yielding results identical to the ABC–ABC analysis.

Our second normative method captures the assumption that learners remain uncertain about the
values of A in the BC block. The fully Bayesian method of honoring this uncertainty is to compute the
likelihood of a given BC trial under both possibilities (i.e., A+ and A�) and take the sum8:
PðB;CjhiÞ ¼ PðB;C;AþjhiÞ þ PðB; C;A�jhiÞ ð5Þ
Intuitively, the learner considers both possible settings of A and then collapses across them to as-
sess the overall likelihood of a given structure leading to the observed values of B and C.
also drew samples of h restricting the range of the b parameters from to 0 to 0.1 (see Lu, Yuille, Liljeholm, Cheng, & Holyoak,
These samples led to a slightly stronger preference for the structure with all three relations (see Appendix A), but the
differences between analyses remained the same.

re formally, one may use the contingencies from the ABC block to derive inferences for the missing status of A during the BC
.g., Anderson, 1991). For example, one may reason that the probability of A being present (though hidden) on a BC block
h B present and C absent equals N(A+,B+,C�)/N(B+,C�), where N(A+, B+,C�) is the number of trials from the ABC block with A
, B present, and C absent, and N(B+,C�) is the total number of trials from the ABC block with B present and C absent, ignoring
es of A. Note, these are only point estimates and are somewhat uncertain based on the low number of trials. Yet, they are
maximum likelihood estimates based on the ABC block. Using this method to compute the expected number of trials with

nt, per trial type (i.e., setting of B and C), leads to inferring a copy of the ABC block, and is thus, equivalent to the
ually simpler method of assuming that the blocks would have been identical.
thank an anonymous reviewer for suggesting this approach.
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Both methods can be considered normative, but each under different circumstances. Specifically, if
the learner is told that the BC and ABC blocks are both representative samples of the contingency pat-
terns between events A, B, and C, then strict uncertainty regarding A is not necessary, and indeed, may
underutilize the information about the A–B–C contingencies from the ABC block. For example, after
reading the later myopia study showing that nightlights and myopia are conditionally independent,
it seems to us that the normative inference is that nightlights do not cause myopia, given that both
research teams evaluated large random samples of the population. Hence, the former method may
be considered normative. However, if the learner is told nothing about where the two blocks of data
came from, then some uncertainty regarding A is prudent and the latter method would be considered
normative. We acknowledge that not all circumstances will fall neatly into one classification or an-
other, but some cases can clearly identify one method as uniquely normative. Experiment 2 utilizes
such a case where causal imprinting is unambiguously non-normative in order to test whether partic-
ipants are sensitive to these distinctions.

Finally, our bounded Bayesian analysis captures a learner that neither thinks back to the BC block to
infer values of A, nor incorporates uncertainty regarding A by considering both possible values of A,
due to cognitive limits. We argue that these are reasonable assumptions to make about human cog-
nition, and that within these limits a normative Bayesian approach can still be applied. Instead of con-
sidering the possible values of A when it was missing, the learner utilizes the BC block by computing
posteriors for only two hypotheses: B-causes-C, and B does not cause C. Then, when starting the ABC
block the learner uses these posteriors as the prior probabilities for the eight new structures that in-
clude all three causes (shown as column labels in Table 1). Specifically, the prior probabilities for the
four structures with B-causes-C (the last four structures of Table 1) are set to the posterior of the struc-
ture with B-causes-C obtained from the BC block. Likewise, the priors for the four structures excluding
B-causes-C (the first four structures of Table 1) are set to the posterior of the structure where B does
not cause C obtained from the BC block. This method will have direct consequences for the common
cause structure and the structure with all three relations. For example, suppose the posterior for the
structure with B-causes-C was 0.75, and the structure where B does not cause C was 0.25. Then at the
start of the ABC block, 0.75 would become the prior probability of the structure with all three rela-
tions. Likewise, 0.25 would become the prior for the common cause structure. This will cause the lear-
ner to favor structures with B-causes-C, a bias that as we will see may not be fully overcome by
viewing the data from ABC block.

3.3. Modeling results

The posterior probabilities of the eight hypotheses are presented in Table 1. Row 2 represents the
predictions for the ABC–ABC data, and rows 3–5 represent the three ways of utilizing the BC block in
light of the missing values of A.

For the ABC–ABC condition and the BC–ABC condition assuming that the BC block is reinterpreted,
the most likely structure was the common cause structure (0.72), followed by the structure with all
three relations (0.28). We note that these two normative predictions match the descriptive predictions
of the ABC–ABC condition and belief revision as summarized in Fig. 3.

One may wonder why, from a normative perspective, the structure with all three relations is likely
at all for the ABC–ABC condition, given that B–C contingency is near zero, conditional on A. A closer
look at our 100,000 samples revealed that this structure received a high likelihood mostly for samples
in which the causal strength parameter for B-causes-C was low. A structure that assigns a low causal
strength for B-causes-C (e.g., less than 0.1) yields very similar predictions in terms of what trials are
likely to appear compared to a model with no B-causes-C relation at all, such as the common cause
structure. Crucially, when the causal strength parameters for all three relations were high, the struc-
ture with all three relations received a very low likelihood.

For the BC–ABC condition assuming uncertainty about the missing values of A (shown as ‘‘Fully
Bayesian’’ in Table 1), the most likely structure was the common cause (0.56), followed by the struc-
ture with all three relations (0.41), followed by the causal chain, ‘A-causes-B and B-causes-C’ (0.03).
The fully Bayesian analysis predicts a pattern similar to the ABC–ABC analysis but with a slightly
greater preference for structures with B-causes-C (i.e., all three relations and causal chain), and also
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a slightly reduced preference for the common-cause structure compared to the ABC–ABC analysis. This
occurs because during the BC block, there is no direct evidence that B and C are independent, given A,
and thus the conditional independence implied from the ABC block is obscured in the final judgments.
Yet, even assuming uncertainty about missing values of A, this method leads to a clear preference for
the common cause, which is unlikely if causal imprinting occurs.

Finally, for the bounded Bayesian analysis of the BC–ABC condition, the most likely structure was
the structure with all three relations (0.79), followed by the causal chain (0.18). The posterior for the
common cause was very low (0.01). Thus, this method leads to a more pronounced form of causal
imprinting, as all of the emphasis is now away from the common cause, and directed toward the
two models including B-causes-C (similar to the descriptive predictions for causal imprinting in Fig. 3).

This last method shows that causal imprinting may be considered boundedly normative, given that
a similar pattern results from a normative Bayesian analysis when adding the assumption that learn-
ers neither reinterpret the foregone BC block, nor consider both possible values of A, due to cognitive
limits. Note, however, that if these assumptions about cognitive limitations no longer provided a valid
justification for causal imprinting, it would be difficult to argue for the normative basis of causal
imprinting. For instance, if the missing values of A in the BC block were later revealed, and the learner
was informed that the BC block was in fact the same as the ABC block that they were about to view,
then causal imprinting should not occur. In this case, the normative predictions should be given by the
ABC–ABC analysis. We explore this possibility directly in Experiment 2.
4. Experiment 1: Causal structure judgments

In Experiment 1, participants viewed contingency data regarding events A, B, and C, either in the
BC–ABC order or the ABC–ABC order. Then, they selected which of the eight possible causal structures
from Table 1 they believed were most likely to be true.

4.1. Participants

Eighty workers from Amazon’s Mechanical Turk website (http://www.mturk.com/) participated for
$1.33. The benefits and reliability of experimental data collected from Mechanical Turk have been pre-
viously documented (Paolacci, Chandler, & Ipeirotis, 2010). Only workers residing in the United States
and with above 90% approval ratings9 on Mechanical Turk were allowed to participate. In addition,
workers were not allowed to participate in more than one of the experiments reported in this paper.
They were screened based on their unique worker ID assigned by Mechanical Turk. Participants in Exper-
iment 1 were randomly assigned to one of two conditions: BC–ABC (N = 42) or ABC–ABC (N = 38).

4.2. Stimuli and design

Participants learned about the relations between two fictitious medical conditions and a fictitious
virus in a number of individuals. The possible event settings were: (A) has the ‘‘Ablique’’ virus or does
not, (B) has ‘‘Burlosis condition’’ or does not, and (C) has the ‘‘Caprix’’ condition or does not. In addi-
tion, we purposively chose the content of the events to be one virus and two conditions such that B
causing A, or C causing A would be extremely unlikely, making the task more manageable for partic-
ipants given the general difficulty of causal structure learning tasks (e.g., Steyvers et al., 2003).

Sample pictures used to illustrate the events are shown in Fig. 4. Absence of an event was always
displayed in blue, and the presence of an event was always displayed in bolded red, so that partici-
pants would be less likely to mistake them.

There were two blocks of trials, one showing contingencies between events B and C (the BC block),
and the other showing contingencies between all three events (the ABC block). The left panel of Fig. 4
illustrates a trial from the BC block, and the right panel of Fig. 4 illustrates a trial from the ABC block.
9 Approval ratings correspond to the percentage of times a worker’s submissions have been approved by a requestor (the person
posting the assignment).

http://www.mturk.com/


Fig. 4. Pictures used to illustrate the presence and absence of events A, B, and C in Experiments 1–4. (Note: Red font used in the
experiments is shown in bold.) (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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As shown in the left panel of Fig. 4, the Ablique virus was not visible at all during the trials of the BC
block, nor was this factor mentioned prior to the BC block in the instructions, just as in the myopia
case where people were not considering parent myopia as a possible common cause. The contingen-
cies of the blocks were summarized above in Fig. 2.

There were two between-subject conditions, the BC–ABC and ABC–ABC conditions. Participants in
the BC–ABC condition viewed the BC block first and the ABC block second. Participants in the ABC–ABC
condition viewed the ABC block twice.
4.3. Procedure

The experiment was conducted using Qualtrics survey software at www.qualtrics.com. Participants
were forwarded to the Qualtrics page after they agreed to participate on the Amazon Mechanical Turk
website. Before starting the experiment, participants indicated their informed consent.

Before the main task, participants completed a training session as in Dennis and Ahn (2001), where
their task was to find out whether an exotic plant causes a physical reaction or not, by viewing several
cases where a plant was either ingested or not and where the person either had a physical reaction or
not. After the training, participants began the main task. In both the BC–ABC and ABC–ABC conditions,
participants were first told about the types of events they would see during the first block (i.e., events
B and C in the BC–ABC condition, and events A, B, and C in the ABC–ABC condition). Then, all partic-
ipants were told, ‘‘As in all medical cases, there may be other relevant factors for these patients that
we are simply unaware of. Just to be clear, we are not implying that these factors are absent.’’ These
instructions, although presented to all participants, were provided as a point of clarification to make
sure that participants in the BC–ABC condition did not later infer that A was absent during the first
block just because the status of A was not presented to them.

Then, we specified for the participants which causal relations to keep track of so that the task
would be manageable. Specifically, participants in the BC–ABC condition were told to consider only
whether the Burlosis condition caused the Caprix condition (B-causes-C), as the causal relation could
not possibly work in the other direction. Similarly, participants in the ABC–ABC condition were told to
consider only three causal relations (A-causes-B, A-causes-C, and B-causes-C).

Then, all participants were told that they would observe 20 individuals whose descriptions would
be presented on the same screen. Participants were told to view these individuals in the order pre-
sented by proceeding from the top of the screen to the bottom. They were further told that they could
review the trials they had already seen by scrolling back up and then returning to their current posi-
tion. We chose this presentation format because previous studies have shown that learning causal
relations among more than two variables is generally difficult (Lagnado & Sloman, 2004; Steyvers
et al., 2003; White, 2006). By modifying the traditional trial-by-trial presentation format in this
way, participants may go back to review or reconsider any trials they might have missed, which
should help to reduce working memory load. In addition, in order to encourage participants to take

http://www.qualtrics.com


Table 2
The average scores and percentages of 1st choices for each structure, separately for each condition. Bolded values are maxima.

Average scores
BC–ABC cond. 0.64 0.24 0.40 0.88 0.64 0.48 1.02 1.69
ABC–ABC cond. 1.03 0.24 0.45 1.55 0.26 0.55 0.45 1.47

% of 1st choices
BC–ABC cond 0.17 0.05 0.05 0.12 0.10 0.02 0.12 0.38
ABC–ABC cond. 0.32 0.00 0.03 0.32 0.00 0.03 0.05 0.26
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the task seriously, they were told that they would receive a $1 bonus if their ratings were within 10
points of the correct values.10

After these instructions for the first block, participants in the BC–ABC condition viewed 20 trials of
the BC block, and those in the ABC–ABC condition viewed 20 trials of the ABC block. These were in fact
the same 20 trials, but for the BC block, the status of A was missing (see Fig. 2). The order of the trials
for each block was randomized, and the same order, as shown in Fig. 2, was used across all participants
to minimize any additional variance due to within-block order effects. Each trial had a unique patient
number to indicate that these were all different individuals.

The 20 trials were presented in a single column with two adjacent trials separated by a horizontal
line. Thus, a trial that looks like right panel of Fig. 4 was presented with a patient number on the top, a
horizontal line underneath that trial, followed by another trial with a different patient number, and so
on.

When the first block was finished, participants received the instructions about the second block on
a new screen. Participants in the BC–ABC condition were told that scientists had discovered a new
virus, and part of their job now was to determine how the virus relates to the two conditions. They
were now told to evaluate relations A-causes-B and A-causes-C, in addition to B-causes-C. Then they
viewed the ABC block. In the ABC–ABC condition, participants were told that they would view some
additional patients to make sure they had enough evidence to judge the causal relations. Then they
viewed the ABC block for a second time. The order of trials was identical to the first block.

When participants completed the second block, they proceeded to a different page and were told to
choose which of the eight possible causal structures they thought best described the causal structure
among the three events. A figure was shown to depict each causal structure (similar to the ones used
in Table 1). The figures were labeled 1–8, starting with zero causal relations (1), to the one-relation
structures (2–4), to the two-relation structures (5–7), and the three-relation structure (8). All of these
eight figures were presented on a single page so that participants could browse through them before
making their responses. Participants made three consecutive choices, indicating which structure cor-
responded to the first most likely, second most likely, and third most likely structure. They were re-
quired to choose three different structures. The questions appeared in the order described, but
participants could change their responses multiple times before all three ratings were submitted.
4.4. Results

The data are summarized in Table 2. To make use of all three choices, we gave each participant a
‘‘score’’ for each structure corresponding to their ranking of the structure. If a structure was chosen
1st, 2nd, and 3rd, the scores were 3, 2, and 1, respectively. If a structure was not chosen, the score
was 0. In addition, we also report the percentages of participants who selected each structure as their
first choice.
10 The normatively correct values depend on a number of variables (e.g., the prior distributions assumed, scaling of posteriors), so
we chose a range of 0–10 for B-causes-C and 80 to 100 for A-causes-B and A-causes-C. These ranges were not disclosed to
participants after the experiment to ensure that they were not shared with other Mechanical Turk workers.
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Experiment 1 was designed to test whether participants who discover an initially unobserved
cause later in learning would revise their prior causal beliefs in light of this new evidence, or show
causal imprinting by failing to revise their prior beliefs. As summarized in Fig. 3 and Table 1, if partic-
ipants engage in belief revision in the BC–ABC condition, they should be most likely to select the com-
mon-cause structure or the structure with all three causal relations. However, if participants show
causal imprinting in the BC–ABC condition, they should be most likely to select the causal chain struc-
ture or the structure with all three relations. As shown in Table 2, the results were consistent with
causal imprinting. The structure with all three relations was the most popular 1st choice and received
the highest scores in the BC–ABC condition. In comparison, the common cause structure was among
the two most popular 1st choices and received the highest scores in the ABC–ABC condition.11

First we present our analyses with the scores dependent measure. To examine whether the condi-
tions differed overall, we conducted an 8 (structures) � 2 (conditions) mixed ANOVA, with structure
as a within-subject factor and condition as a between-subject factor. The interaction between struc-
ture and condition was significant, F(7,546) = 2.82, p < 0.01, g = 0.03.12 Independent samples t-tests
showed that the BC–ABC condition had significantly lower scores for the common cause structure
(M = 0.88, SD = 1.09) than the ABC–ABC condition (M = 1.55, SD = 1.25), t(78) = �2.58, p = 0.01, d = 0.57,
but significantly higher scores for the causal chain (M = 1.02, SD = 1.05) than the ABC–ABC condition
(M = 0.45, SD = 0.86), t(78) = 2.67, p < 0.01, d = 0.60. Also, while both normative (i.e., reinterpretation
and fully Bayesian) analyses of the BC–ABC condition predicted a preference for the common cause over
the causal chain and over the structure with all three causal relations (see Table 1), scores for the com-
mon cause structure in the BC–ABC condition (M = 0.88, SD = 1.09) did not differ significantly from scores
for the causal chain (M = 1.02, SD = 1.05), t(41) = �0.56, p = 0.58, d = 0.09, and were significantly lower
than scores for the structure with all three causal relations (M = 1.69, SD = 1.28), t(41) = �3.20,
p < 0.01, d = 0.49. Thus, the judgments in the BC–ABC condition failed to support normative predictions.

Another important test for causal imprinting is whether participants in the BC–ABC condition were
more likely to choose structures including the B-causes-C relation. Note that we cannot evaluate this
by considering the structure with only B-causes-C, as this structure also excludes A-causes-B and
A-causes-C, which is highly unlikely to be endorsed by either condition given the strong positive
A–B and A–C contingencies. Instead, to evaluate this difference, for each participant we took the aver-
age scores for structures with B-causes-C (i.e., the last four structures shown in Table 2) and compared
these across conditions. The BC–ABC condition had significantly higher average scores (M = 0.96,
SD = 0.38) than the ABC–ABC condition (M = 0.68, SD = 0.41), t(78) = 3.11, p < 0.01, d = 0.71, consistent
with causal imprinting.

Next, we examine overall differences in the 1st choices across the conditions using logistic regres-
sion, including structure, condition, and their interaction as predictor variables. To assess the interac-
tion between condition and structure, we used a model comparison technique by comparing the fit of
a regression model with all interaction terms (there were multiple interaction terms due to the cate-
gorical nature of the structure variable) to the fit of a model with no interaction terms. The model
excluding the interaction terms provided a significantly worse fit than the model with the interaction
terms, v2(7) = 17.81, p = 0.01. Thus, participants differed between the conditions in their pattern of 1st
choices. In particular, the common cause was a less frequent 1st choice in the BC–ABC condition (0.12)
than in the ABC–ABC condition (0.32), v2(1,N = 80) = 4.61, p = 0.03. In contrast, the causal chain was a
more frequent 1st choice in the BC–ABC (0.12) than in the ABC–ABC condition (0.05), though this
11 The other most popular first choice in the ABC–ABC condition was the structure with no causal relations. We speculate that the
reason for this preference was that the ABC–ABC condition was more difficult overall, given that all three events were present
throughout. Hence, participants gave this response due to confusion or being overwhelmed with choices. Experiments 2 and 3,
which used the same study procedure but causal strength estimation of individual links rather than structure judgments, do not
show lower ratings overall in the ABC–ABC condition. These findings suggest that the preference for no causal relations is not a
general property of the ABC–ABC condition.

12 We also performed a more conservative analysis to avoid the assumption made by ANOVA that the scores are normally
distributed. Rather than weighting the 1st, 2nd, and 3rd choices differently, we assigned each structure a score of 1 if it was
included in the top three and a score of 0 otherwise. A logistic regression assessing the interaction between condition and structure
revealed a significant interaction for this coding scheme. In addition, Chi-square tests used for the main effects analyses yielded
similar significance values to the t-tests presented below.
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difference did not reach significance, p = 0.44, using Fisher’s exact test. These results are analogous to
those using the scores dependent measure, and are both consistent with causal imprinting.

Finally, a significantly greater percentage of participants in the BC–ABC condition indicated a struc-
ture with B-causes-C as their 1st choice (0.62) than in the ABC–ABC condition (0.34),
v2(1,N = 80) = 6.12, p = 0.01, consistent with causal imprinting. Indeed, participants in the BC–ABC
condition were nearly twice as likely to choose structures with B-causes-C, which is impressive, given
that the two conditions viewed the same B–C contingencies, with the only exception that A was absent
during the first block.

Overall, Experiment 1 showed ample evidence for causal imprinting. Participants in the BC–ABC
condition were less likely to choose the common cause structure than participants in the ABC–ABC
condition, more likely to choose the causal chain structure, and more likely to choose structures
including B-causes-C. Participants in the BC–ABC condition also had a slight preference for the causal
chain over the common cause and a large preference for the structure with all three relations over the
common cause, inconsistent with belief revision and with the reinterpretation and fully Bayesian
analyses.

Though our findings are consistent with causal imprinting, our analyses were limited in several
ways due to our use of causal structure judgments. First, we note that the structure with all three rela-
tions was one of the most popular choices in both conditions, representing about one third of the top
choices. Unfortunately, these choices were not useful in testing our hypotheses, because the structure
with all three relations is consistent with both belief revision and causal imprinting (see Fig. 3). Our
primary analyses focused on other structures, and as a result, our demonstrations of causal imprinting
may have been less impressive. For instance, although all of our comparisons between conditions were
in the right direction, the comparison of the 1st choices for the causal chain did not reach significance.
In addition, our comparisons of the common cause structure were significant, but somewhat weak
(e.g., using Bayesian t-tests, the evidence is only suggestive; Rouder, Speckman, Dongchu, Morey, &
Iverson, 2009).

Second, although we predicted that participants in both conditions would choose the structure
with all three relations (see Fig. 3), we also predicted that those in the ABC–ABC condition or those
who engaged in belief revision should have believed in a weaker B-causes-C relation than those
who showed causal imprinting. Causal structure judgments do not allow us to detect such important
differences between the inferred strength of the causal relations. A more direct way of testing this
quantitative difference would be to ask participants to estimate the causal strength of each link. This
is one of the modifications made in the next experiments.

5. Experiment 2: Causal strength judgments with same vs. different tokens

The main goal in Experiment 2, aside from the change to causal strength ratings just mentioned,
was to understand why participants in the BC–ABC condition in Experiment 1 failed to revise their ini-
tial causal belief. As we discussed in the introduction, we propose that causal imprinting occurs be-
cause of an asymmetry in how initial and later pieces of evidence are used during learning.
Namely, because people have a tendency to apply previously acquired knowledge when interpreting
the later evidence, they will be slow to reinterpret or revise that knowledge based on the later evi-
dence. Thus, people will act as if they were imprinted with their initial causal belief. Yet, there may
be other reasons that we obtained what appears to be causal imprinting. Experiment 2 attempts to
rule out two theoretically important alternative accounts, which we derived from our Bayesian
analyses.

Recall that both the fully and bounded Bayesian analyses of the BC–ABC condition showed greater
preferences for structures including B-causes-C, compared to the ABC–ABC analysis. In the fully Bayes-
ian analysis, this occurred due to the reasonable assumption that learners may have been uncertain
about the missing values of A during the BC block. To make this idea of uncertainty concrete, learners
may have been unsure about whether the individuals from the BC block were taken from the same
context as those from the ABC block (Liljeholm & Cheng, 2007). Causal relations among events may
change depending on temporal or spatial context, because of differences in the presence or absence
of other interacting causes. For instance, in a cold climate B may cause C regardless of presence of virus
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A, but in a hot climate B may share a positive contingency with C only because of virus A. Participants
may have also assumed that the data presented in the first block occurred before the data in the sec-
ond block, and that the context changed as time passed. Thus, if learners were uncertain about the
underlying contingencies in the BC block, they would have been justified in not revising their initial
belief, as the two sets of data could have been obtained from different contexts.

A pattern similar to causal imprinting also occurred in the bounded Bayesian analysis, where the
learner neither reinterprets the BC block after viewing the ABC block, nor considers possible values
of A during the BC block, due to cognitive limits. Instead, the BC block is used only to update the belief
in B-causes-C, which leads to a greater belief in structures including this relation and a much lower
belief in the common cause structure. That is, causal imprinting might have happened in Experiment
1 simply due to cognitive limitations.

To examine both possibilities, Experiment 2 included a new BC–ABC ‘‘same tokens’’ condition
where participants were told that the ABC block represented the exact same individuals as the BC
block. More specifically, they were told after the BC block that scientists recently discovered informa-
tion about presence or absence of virus A in the individuals that they had just observed, and that now
they would be observing these individuals again along with this information. This new condition pro-
vides a direct test of the fully and bounded Bayesian accounts of causal imprinting. First, the new
instructions in the same tokens condition remove all uncertainty about the missing values of A, mean-
ing that learners should not show causal imprinting as predicted by the fully Bayesian analyses. Sec-
ond, because the BC block will now be repeated, and this time with the actual values of A revealed, the
rational behavior is to use this information in lieu of the contingencies from the BC block. Thus,
cognitive limitations are also no longer a valid excuse for not revising the initial beliefs. If this new
BC–ABC condition continues to show causal imprinting, then it could not be motivated by uncertainty
or cognitive limitations. Instead, it would imply a non-normative bias to maintain the belief that was
first imprinted in the reasoner’s mind.
Fig. 5. Causal strength ratings derived from the normative Bayesian analyses of the ABC–ABC and BC–ABC conditions presented
in Table 1, separately for B-causes-C (B ? C), A-causes-B (A ? B), and A-causes-C (A ? C). Sub-headings beneath the graph
panels indicate for what conditions each set of predictions should be considered normative. The bounded Bayesian analysis of
the BC–ABC condition may also be considered normative for the BC–ABC different tokens condition (though not the same tokens
condition), but only when taking into account cognitive limitations. The bounded Bayesian analysis also shows a pattern very
similar to what we would expect if causal imprinting occurs.
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5.1. Causal strength predictions

The descriptive predictions summarized in Fig. 3 shown in Section 2 were given in terms of causal
structure judgments, not causal strength ratings. However, we can restate these predictions by assum-
ing that relations appearing more often in the predicted structures from Fig. 3 will be given higher
causal strength ratings. Using this method, if causal imprinting occurs, then the central prediction
is that ratings for B-causes-C should be higher in the BC–ABC condition than in the ABC–ABC
condition.

In addition, if participants in the BC–ABC condition infer all three relations or the chain due to cau-
sal imprinting (see Fig. 3), then their ratings for B-causes-C should not differ much from their ratings
for A-causes-B. In contrast, participants in the ABC–ABC condition should give lower ratings for
B-causes-C than for A-causes-B. Also, if causal imprinting leads some participants in the BC–ABC con-
dition to infer all three relations and others to infer the causal chain, then ratings for A-causes-C could
be lower in the BC–ABC condition than in the ABC–ABC condition. Note, however, that the lack of a
difference in ratings for A-causes-C would not necessarily provide evidence against causal imprinting,
as people in the BC–ABC condition might primarily infer all three relations.

We can also obtain normative predictions for causal strength ratings based on the posterior prob-
abilities of the causal structures from the Bayesian analyses (see Table 1 in Section 3.3). Following pre-
vious work (Friedman & Koller, 2003; Griffiths & Tenenbaum, 2005), we computed the causal strength
for a specific causal relation by summing the posterior probabilities of the causal structures including
that relation. For example, to obtain the posterior probability of the B-causes-C relation, we summed
the posteriors for the four hypotheses in the rightmost columns of Table 1, which all include B-causes-
C.

Fig. 5 shows the strength for each causal relation, separately for each of the analyses considered in
Table 1. Fig. 5 also includes the normative predictions for the BC–ABC same tokens condition, where
posterior probabilities are computed based only on one ABC block. As can be readily seen in the figure,
all of the normative analyses for the BC–ABC conditions (including the analysis for the BC–ABC same
tokens condition) predict much lower ratings for B-causes-C than for A-causes-C, as do the analyses
for the ABC–ABC condition. Finally, we note that the bounded Bayesian analysis again represents a
form of causal imprinting, but in Experiment 2 this is non-normative for the BC–ABC same tokens
condition.

5.2. Participants

One hundred eighty-one workers from Amazon’s Mechanical Turk website participated as in Exper-
iment 1. Workers that participated from Experiment 1 were excluded from Experiment 2 based on their
unique worker ID assigned by Mechanical Turk. Participants were randomly assigned to one of three
conditions: BC–ABC different tokens (N = 63), BC–ABC same tokens (N = 59), or ABC–ABC (N = 59).

5.3. Stimuli, design, and procedure

The stimuli and procedure were similar to Experiment 1, except for the addition of the new BC–ABC
same tokens condition, the use of causal strength ratings, and changes to the training procedure to re-
flect the use of causal strength ratings.

The training procedure was the same as in Experiment 1, except that after participants viewed the
sample cases, they were introduced to the scale for the causal strength ratings. Participants were told
that a rating of 0 indicated that Event 1 has no effect on Event 2, and 100 indicated that Event 1 very
strongly causes Event 2. They were further provided with examples to give an intuition for how to use
the scale, as in Dennis and Ahn (2001).

The new BC–ABC same tokens condition was identical to the BC–ABC different tokens condition (i.e.,
the BC–ABC condition from Experiment 1), except for the instructions prior to the ABC phase. Partici-
pants in this condition were told that the same individuals from the BC block were shown in the ABC
block, though now the status of event A (the Ablique virus) would be shown. Participants were told,
‘‘The scientists tested the EXACT SAME 20 individuals for the Ablique virus, using the EXACT SAME
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blood samples that led to the Burlosis and Caprix diagnoses. You will now re-view these SAME 20 indi-
viduals’ descriptions, but this time you will see whether or not each individual had the Ablique virus.’’

After viewing the two blocks of descriptions about patients that correspond to their condition, all
participants gave three causal strength ratings (namely, A-causes-B, A-causes-C, and B-causes-C) using
the same scale from the training session. A picture of the scenario was shown, similar to the right pa-
nel of Fig. 4, but with the boxes colored in black and only the event names without their presence/ab-
sence being stated (e.g., event B read simply, ‘‘Burlosis Condition’’). Arrows between the events were
added to clarify the direction of the causal relations.

All three causal strength rating questions were given on the same screen, so participants could
make their ratings in any order and change them multiple times before all three were submitted.
The order in which the three causal strength ratings was displayed from top to bottom was counter-
balanced by a factorial combination of two factors: whether the B-causes-C rating was displayed be-
fore the two common cause ratings (A-causes-B and A-causes-C), and which of the two common cause
ratings was displayed first. The differences between the conditions we report below did not depend on
the order of the three causal strength ratings.

5.4. Manipulation check

If the causal imprinting effects obtained in Experiment 1 were due to uncertainty about the missing
A values or to cognitive limitations, then there should be no causal imprinting in the BC–ABC same
tokens condition. Thus, these accounts are ruled out if causal imprinting still occurs in this condition.
However, one might argue that causal imprinting in this condition could happen simply because par-
ticipants fail to attend to or properly encode the instructions.13 To exclude this possibility we con-
ducted a separate experiment with only the two BC–ABC conditions to verify that participants read
and understood the instructions.

For this manipulation check, a separate group of 31 participants from Amazon’s Mechanical Turk
website were randomly assigned to the BC–ABC same (N = 17) or different (N = 14) tokens conditions,
and viewed the exact same instructions and blocks of data as participants in the main Experiment 2.
However, after viewing the ABC block, participants did not give causal ratings, but rather, answered a
question about the instructions they read prior to the ABC block. The question stated, ‘‘You have now
seen two sets of 20 individuals. Did the instructions state that the second set represented the same
individuals as the first set or different individuals?’’ They responded either ‘‘same’’ or ‘‘different.’’ In
the same tokens condition, 16 of 17 (94%) answered ‘‘same,’’ which would not be expected if they mis-
understood the instructions and were responding at chance (p < 0.01, binomial test). In contrast, in the
different tokens condition, only 7 of 14 (50%) answered ‘‘same.’’ The difference in proportion of ‘‘same’’
responses between conditions was significant (p = 0.01, Fisher’s exact test). Hence, the instructions in
the BC–ABC same tokens condition was effective in establishing that the individuals from the BC and
ABC blocks were indeed the same.

We also note that the chance responding in the different tokens condition (50% accuracy) is sensi-
ble given that the instructions (i.e., ‘‘You will now observe 20 more individuals.’’) did not strongly
emphasize different individuals. Incidentally, this lower accuracy also strengthens our account of
the causal imprinting effects in our other experiments. That is, if the answers to our manipulation
check for the different tokens condition correspond to reasoners’ actual beliefs about the individuals
presented during learning, then roughly half of the participants in all of our experiments were implic-
itly in the same tokens condition, where they should not have shown causal imprinting according to
normative accounts.

5.5. Results

Overall, the results showed causal imprinting in both the same and different tokens BC–ABC con-
ditions, suggesting that causal imprinting is in fact non-normative. Fig. 6 shows the average causal
strength ratings for the three conditions.
13 We thank an anonymous reviewer for this suggestion.
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For statistical analyses, we first examine whether the conditions differed overall in their patterns of
ratings. A 3 (causal relation) � 3 (condition) mixed ANOVA with causal strength rating as the depen-
dent variable, causal relation as a within-subjects factor, and condition as a between-subjects factor,
revealed a significant interaction between causal relation and condition, F(4,356) = 7.32, p < 0.01,
g2 = 0.07. We then examined the differences between each pair of conditions by conducting separate
3 (causal relation) � 2 (condition) mixed ANOVAs. The ANOVA comparing the BC–ABC same and dif-
ferent tokens conditions revealed no interaction between condition and cause, F(2,240) = 0.07,
p = 0.93, g2 < 0.01. However, there were significant interactions from the ANOVAs comparing the
BC–ABC different tokens condition and the ABC–ABC condition, F(2,240) = 10.92, p < 0.01, g2 = 0.08,
and comparing the BC–ABC same tokens condition and the ABC–ABC condition, F(2,232) = 11.87,
p < 0.01, g2 = 0.09.

Next, we examined which of the specific causal relations led to the different patterns of ratings in
the BC–ABC conditions and the ABC–ABC condition. In support of causal imprinting, ratings for B-
causes-C were significantly higher in both the BC–ABC different tokens condition (M = 58.05,
SD = 31.22) and the BC–ABC same tokens condition (M = 57.15, SD = 30.92) than in the ABC–ABC con-
dition (M = 39.98, SD = 30.72), t(120) = 3.22, p < 0.01, d = 0.58, and t(120) = 3.03, p < 0.01, d = 0.56,
respectively.

Further analyses addressed the two other causal relations. First, if causal imprinting lead some par-
ticipants in the BC–ABC condition to infer the causal chain, then ratings for A-causes-C should be low-
er in the BC–ABC condition than in the ABC–ABC condition. Consistent with this prediction, ratings for
A-causes-C were significantly lower in both the BC–ABC different tokens condition (M = 48.24,
SD = 33.79) and the BC–ABC same tokens condition (M = 45.42, SD = 29.31) than in the ABC–ABC con-
dition (M = 58.92, SD = 25.40), t(120) = �1.97, p = 0.05, d = 0.36, and t(116) = 2.67, p < 0.01, d = 0.49,
respectively.

Second, if participants in the BC–ABC conditions had inferred the chain, then ratings for A-causes-B
should not differ between the BC–ABC and ABC–ABC conditions. In fact, ratings for A-causes-B were
somewhat lower in both the BC–ABC different tokens condition (M = 55.33, SD = 32.95) and the BC–
ABC same tokens condition (M = 55.03, SD = 27.36) than in the ABC–ABC condition (M = 64.19,
SD = 24.61), t(120) = �1.67, p = 0.10, d = 0.30, and t(116) = �1.91, p = 0.06, d = 0.35, respectively. We
note, however, that these slight differences may have occurred only because participants in the
ABC–ABC condition viewed two blocks of trials with both A and B visible, whereas participants in
Fig. 6. Average causal strength ratings for the three conditions in Experiment 2, separately for B-causes-C (B ? C), A-causes-B
(A ? B), and A-causes-C (A ? C).
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the BC–ABC conditions viewed only one block. In Experiment 3 we add a new ABC condition that
presents only one ABC block to see whether the difference in ratings for A-causes-B would
disappear, while the difference in ratings for A-causes-C would still occur (suggesting causal chain
inferences).

Finally, we compared ratings of B-causes-C and A-causes-B within each condition. If causal
imprinting occurred, then participants in the BC–ABC conditions should have given similar ratings
for these relations, whereas participants in the ABC–ABC condition should have given much lower rat-
ings for B-causes-C (see Fig. 3). Consistent with causal imprinting, in the BC–ABC different tokens con-
dition ratings for B-causes-C (M = 58.05, SD = 31.22) were not significantly different from A-causes-B
(M = 55.33, SD = 32.95), t(62) = 0.51, p = 0.61, d = 0.06. Similarly, in the BC–ABC same tokens condition
ratings for B-causes-C (M = 57.15, SD = 30.92) were not significantly different from A-causes-B
(M = 55.03, SD = 27.36), t(58) = 0.39, p = 0.70, d = 0.05. In contrast, in the ABC–ABC condition ratings
for B-causes-C (M = 39.98, SD = 30.71) were significantly lower than for A-causes-B (M = 64.19,
SD = 24.61), t(58) = �5.10, p < 0.01, d = 0.66. Furthermore, the difference in ratings in the ABC–ABC
condition was significantly greater than that of the BC–ABC different tokens condition,
t(120) = 3.76, p < 0.01, d = 0.68, and the same tokens condition, t(116) = 3.65, p < 0.01, d = 0.67.

Overall, the results from Experiment 2 provide further support for causal imprinting and suggest
that it is highly unlikely to be due to uncertainty or cognitive limitations. Furthermore, the lack of a
significant difference in the BC–ABC conditions between ratings for B-causes-C and A-causes-B fails
to support the predictions of the normative models presented in Fig. 5. Thus, the causal imprinting
observed in the BC–ABC conditions appears to be non-normative.
6. Experiment 3: Causal strength judgments with additional controls

In Experiments 1 and 2, participants in the BC–ABC conditions gave strong endorsement and high
ratings for B-causes-C. In Experiment 2 in particular, B-causes-C ratings in the BC–ABC conditions
were as high as their ratings for A-causes-B, and higher than the ratings for B-causes-C in the ABC–
ABC condition. Though consistent with causal imprinting, these specific results do not necessarily im-
ply that participants in the BC–ABC condition held the same level of belief in B-causes-C across the BC
block and the ABC block. Instead, they might have begun to reduce their belief in B-causes-C during
the ABC block, even if not fully to the levels of participants in the ABC–ABC condition. Consistent with
this observation, a Bayesian analysis on just the data from the BC block predicts a much higher pos-
terior probability of B-causes-C (0.76) than does the fully Bayesian analysis of the BC–ABC block (0.28).
If ratings of B-causes-C in the BC–ABC condition did decline after observing the ABC block, then our
demonstrations of causal imprinting would be weaker than we initially thought. To test this possibil-
ity, Experiment 3 compares ratings for B-causes-C in the BC–ABC condition after the ABC block to a
new BC condition, where participants would only view the BC block and then immediately give causal
strength ratings.

Another goal of Experiment 3 was to further examine ratings for A-causes-B and A-causes-C. If par-
ticipants in the BC–ABC conditions had inferred the causal chain, then ratings for A-causes-C would be
lower in the BC–ABC condition than in the ABC–ABC condition, but ratings for A-causes-B would be
similar in these two conditions. However, in Experiment 2 we found that ratings for both relations
were lower in the BC–ABC condition. We attributed the difference for A-causes-B to the greater num-
ber of trials in the ABC–ABC condition where both events A and B were visible. Yet, this greater num-
ber of trials would also invalidate the expected finding that A-causes-C was lower in the BC–ABC,
because the BC–ABC condition also viewed fewer trials where both events A and C were visible. Thus,
while the ABC–ABC condition was useful in controlling for the number of trials with both B and C, the
results from the ABC–ABC condition are difficult to interpret in relation to the ratings for A-causes-B
and A-causes-C. To control for the number of trials with A and B, and A and C, Experiment 3 utilized a
new ABC condition, where participants would only view the ABC block once and then immediately
give causal strength ratings. By comparing the BC–ABC condition to the ABC condition, we can deter-
mine whether participants in these conditions show equal learning of A-causes-B, but give lower
ratings for A-causes-C.
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6.1. Participants

One hundred forty-three workers from Amazon’s Mechanical Turk website participated as in
Experiments 1 and 2. Workers that participated from Experiments 1 and 2 were excluded from Exper-
iment 3 based on their unique worker ID assigned by Mechanical Turk. Participants were randomly
assigned to one of three conditions: BC (N = 47), BC–ABC (N = 52), or ABC (N = 51).

6.2. Materials, design, and procedure

The materials, design, and procedure were identical to Experiment 2 except for the following. There
were three conditions: BC–ABC, BC, and ABC conditions. The BC–ABC condition was identical to the
BC–ABC different tokens condition in Experiment 2. The BC condition viewed only the BC block. The
ABC condition viewed only the ABC block. The instructions for the BC condition were identical to
the instructions for the BC–ABC condition prior to the BC block. The instructions for the ABC condition
were identical to the instructions in Experiment 2 for the ABC–ABC condition prior to the ABC block.

6.3. Results

Fig. 7 shows the average causal ratings for the three conditions. To preview, participants in the
BC–ABC condition did not appear to have lowered their belief in B-causes-C at all, even after viewing
the ABC block. Also, the results from the BC–ABC condition suggest that some participants inferred the
causal chain.

We first examined whether the conditions differed overall. A 3 (causal relation) � 3 (condition)
mixed ANOVA with causal strength rating as the dependent variable, causal relation as a within-sub-
jects factor, and condition as a between-subjects factor, revealed a significant interaction between
causal relation and condition, F(4,294) = 11.64, p < 0.01, g2 = 0.14. The 3 (causal relation) � 2 (condi-
tion) mixed ANOVA comparing the BC and BC–ABC conditions revealed a significant interaction be-
tween condition and cause, F(2,194) = 5.12, p < 0.01, g2 = 0.05, as did the ANOVA comparing the
BC–ABC and ABC conditions, F(2,202) = 10.65, p < 0.01, g2 = 0.09.

Next we compared ratings for specific relations across the BC and BC–ABC conditions. If partici-
pants in the BC–ABC condition revised their beliefs in B-causes-C based on the ABC block, their ratings
Fig. 7. Average causal strength ratings for the three conditions in Experiment 3, separately for A-causes-B (A ? B), A-causes-B
(A ? B), and A-causes-C (A ? C).



E.G. Taylor, W.-k. Ahn / Cognitive Psychology 65 (2012) 381–413 403
should be lower than the BC condition. Yet, ratings for B-causes-C in the BC–ABC condition
(M = 57.58 = 32.08) were not significantly different from ratings in the BC condition (M = 59.38,
SD = 26.85), t(97) = �0.30, p = 0.76, d = 0.06, failing to provide any evidence for belief revision. In con-
trast, ratings for A-causes-B were significantly greater in the BC–ABC condition (M = 62.40, SD = 26.73)
than the BC condition (M = 40.68, SD = 29.04), t(97) = 3.88, p < 0.01, d = 0.78, suggesting that partici-
pants did update their beliefs in some way based on the ABC block. Ratings for A-causes-C did not dif-
fer significantly between the BC–ABC condition (M = 49.65, SD = 28.12) and the BC condition
(M = 42.66 = 28.29), t(97) = 1.23, p = 0.22, d = 0.25. This finding is consistent with the hypothesis that
some participants in the BC–ABC condition may have inferred the causal chain, which excludes this
relation.

We also compared the BC–ABC and ABC conditions. If participants in the BC–ABC condition inferred
the causal chain, then ratings for A-causes-C should be lower in this condition than in the ABC condi-
tion, but ratings for A-causes-B should be similar across these conditions. As predicted, ratings for A-
causes-C were lower in the BC–ABC condition (M = 49.65, SD = 28.12) than in the ABC condition
(M = 64.27, SD = 29.03), t(101) = �2.60, p < 0.01, d = 0.51, but ratings for A-causes-B were not signifi-
cantly different between the BC–ABC condition (M = 62.40, SD = 26.73) and the ABC–ABC condition
(M = 62.25, SD = 30.08), t(101) = 0.026, p = 0.98, d = 0.01. Hence, the difference in Experiment 2 for
A-causes-C was not likely due to the lower number of trials in the BC–ABC condition with both A
and C visible. The difference in ratings for A-causes-B, however, disappears when controlling for the
number of such trials.

Finally, if causal imprinting occurred, then ratings for B-causes-C should be higher in the BC–ABC
condition than in the ABC condition, and the difference in ratings between B-causes-C and A-causes-B
should be smaller in the BC–ABC condition than in the ABC condition, as we found in Experiment 2.
Indeed, ratings for B-causes-C were higher in the BC–ABC condition (M = 57.58, SD = 32.08) than in
the ABC condition (M = 39.63, SD = 31.05), t(101) = 2.88, p < 0.01, d = 0.57. We note, however, that in
Experiment 3 participants in the BC–ABC condition also viewed more trials with both B and C than
the ABC condition (due to our controlling for the number of trials with both A and B/C visible), which
may have contributed to this difference (though see Experiments 2 and 4). In addition, ratings for
B-causes-C in the BC–ABC condition (M = 57.58, SD = 32.08) were not significantly different from
A-causes-B (M = 62.40, SD = 26.73), t(51) = �1.02, p = 0.31, d = 0.14, whereas ratings for B-causes-C
in the ABC condition (M = 39.63, SD = 31.05) were significantly lower than for A-causes-B
(M = 62.25, SD = 30.08), t(50) = �4.38, p < 0.01, d = 0.61. The differences in these two ratings for the
BC–ABC condition was also significantly smaller than that of the ABC condition, t(101) = 2.54,
p = 0.01, d = 0.50, providing further support for causal imprinting.

7. Experiment 4: Causal strength judgments with order manipulation

In Experiment 4 we test a final prediction of our account of causal imprinting. We have argued that
causal imprinting occurs because the evidence from the BC block leads to imprinting of the belief that
B causes C, which then leads to biased interpretations of the ABC block. An essential aspect of this ac-
count is that causal imprinting stems from viewing evidence in a specific order, with the BC block be-
fore the ABC block. This ordering is critical, because if participants were to view the ABC block before
the BC block, they should infer structures with weak B-causes-C (as demonstrated in the previous
experiments), which in turn would lead to biased interpretations of BC block by the same principle.
Hence, a crucial test of our account is that causal imprinting should occur only when learners view
the BC block before the ABC block, and a similar pattern should not occur for the reverse ordering.

In Experiment 4 we considered only two conditions, the BC–ABC condition and a new ABC–BC con-
dition, which viewed the BC block after viewing the ABC block. We predicted that although partici-
pants in the two conditions would have observed identical trials by the time they make causal
strength judgments, those in the ABC–BC condition would not show causal imprinting, while those
in the BC–ABC would. Thus, participants in the ABC–BC condition would give lower ratings for
B-causes-C than those in the BC–ABC condition, and would give lower ratings for B-causes C than
for A-causes-B, whereas participants in the BC–ABC condition would give equally high ratings for
B-causes-C and A-causes-B.
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7.1. Participants

Sixty-one workers from Amazon’s Mechanical Turk website participated as in Experiments 1–3.
Workers that participated from Experiments 1–3 were excluded from Experiment 4 based on their un-
ique worker ID assigned by Mechanical Turk. Participants were randomly assigned to one of two con-
ditions: BC–ABC (N = 30) or ABC–BC (N = 31).

7.2. Materials, design, and procedure

The materials, design, and procedure were identical to Experiment 2 except for the following. There
were only two conditions: BC–ABC and ABC–BC. The BC–ABC condition was identical to the BC–ABC
different tokens condition in Experiment 2. Participants in the ABC–BC condition read the same
instructions prior to the ABC block as the ABC–ABC condition from Experiment 2, but a new set of
instructions prior to the BC block: ‘‘Unfortunately, due to computer errors, [scientists] lost all the re-
cords about whether or not these individuals had been infected with the Ablique virus.’’ These instruc-
tions were designed to be plausible, given our cover story of a research setting, and to ensure that
participants did not misinterpret the missing information about values of A as the absence of A, given
that they had just observed A during the first block.

7.3. Results

Fig. 8 shows the average causal ratings for the two conditions. To preview, the pattern of results
from the BC–ABC condition suggests causal imprinting much more than that from the ABC–BC condi-
tion. A 3 (causal relation) � 2 (condition) mixed ANOVA with causal strength rating as the dependent
variable, causal relation as a within-subjects factor, and condition as a between-subjects factor, re-
vealed a significant interaction between causal relation and condition, F(2,118) = 3.25, p = 0.04,
g2 = 0.05.

Ratings for B-causes-C were higher in the BC–ABC condition (M = 60.07, SD = 25.19) than in the
ABC–BC condition (M = 41.19, SD = 31.77), t(59) = 2.57, p = 0.01, d = 0.66, but there was no difference
in ratings for A-causes-B (BC–ABC condition: M = 62.00, SD = 27.54; ABC–BC condition: M = 63.35,
SD = 31.77), t(59) = �0.19, p = 0.85, d = 0.02, or for A-causes-C (BC–ABC condition: M = 52.53,
SD = 27.89; ABC–BC: M = 56.26, SD = 30.38), t(59) = �0.50, p = 0.62, d = 0.13. As we mentioned earlier,
Fig. 8. Average causal strength ratings for the two conditions in Experiment 4, separately for A-causes-B (A ? B), A-causes-B
(A ? B), and A-causes-C (A ? C).



E.G. Taylor, W.-k. Ahn / Cognitive Psychology 65 (2012) 381–413 405
the lack of a difference in ratings for A-causes-C does not undermine our results for causal imprinting,
though it does suggest that participants in the BC–ABC condition of the current experiment were more
likely to infer the structure with all three relations, as opposed to the causal chain.

In addition, for participants in the BC–ABC condition ratings for B-causes-C (M = 60.07, SD = 25.19)
were not significantly different from their ratings for A-causes-B (M = 62.00, SD = 27.54), t(29) = �0.31,
p = 0.76, d = 0.06, whereas in the ABC–ABC condition, ratings for B-causes-C (M = 41.19, SD = 31.77)
were significantly lower than their ratings for A-causes-B (M = 63.35, SD = 29.27), t(30) = �3.04,
p < 0.01, d = 0.55. The difference between these two ratings in the BC–ABC condition was significantly
smaller than the difference in the ABC–BC condition, t(59) = 2.11, p = 0.04, d = 0.54, consistent with
causal imprinting.

8. General discussion

We often learn causal structures incrementally over time. In some cases the later viewed evidence
provides information about an initially hidden variable, and the conditional contingency involving this
hidden variable calls into question our original causal beliefs. The goal of this paper was to examine
whether people use the later evidence in these circumstances to reinterpret the initial evidence that
led to their original causal beliefs, or whether they show ‘‘causal imprinting’’ instead, which we define
as the tendency to avoid such reinterpreting and to maintain the original causal belief. We examined
this issue in the context of learning about a common cause after observing a positive contingency be-
tween the two effects of the common cause. Across four experiments using different dependent mea-
sures and control comparisons, we found consistent evidence in support of causal imprinting.

In Experiment 1, participants in the BC–ABC condition observed a positive contingency between
two effects (events B and C), followed by a positive contingency between a common cause (event
A) and the two effects. In contrast, participants in the ABC–ABC condition observed a positive contin-
gency between the common cause and its two effects from the outset. We found that participants in
the BC–ABC condition inferred the correct common cause structure less often than the ABC–ABC con-
dition and inferred the causal chain and other structures including B-causes-C more often. Both results
suggest that causal imprinting had occurred.

In Experiment 2, we found further evidence for causal imprinting using causal strength ratings
rather than causal structure judgments. Ratings for the B-causes-C relation were higher in the BC–
ABC condition than in the ABC–ABC condition. Furthermore, we tested whether the failure to revise
the belief in B-causes-C in Experiment 1 was due to learners being uncertain about the missing values
of A during the BC block or to limited cognitive abilities. This test was critical given that a fully Bayes-
ian and bounded Bayesian analysis of the BC–ABC condition yielded strength ratings tending towards
causal imprinting when incorporating uncertainty and cognitive limits. In Experiment 2 we removed
uncertainty and cognitive load by telling participants in a new BC–ABC condition that the BC and ABC
blocks represented the same exact individuals. In this case, the normative behavior is not causal
imprinting, but participants in this condition continued to show imprinting, giving higher ratings
for B-causes-C than the ABC–ABC condition.

Experiment 3 demonstrated the robustness of causal imprinting using the original BC–ABC condi-
tion, plus a new BC condition (presenting only the BC block) and ABC condition (presenting only the
ABC block). Ratings for B-causes-C were nearly identical in the BC and BC–ABC conditions, suggesting
that participants in the BC–ABC condition did not revise their original belief at all, even after observing
data showing that the positive contingency between B and C disappears when conditionalizing on A.
In addition, ratings for A-causes-B (part of the common cause structure) did not differ between the
BC–ABC and ABC conditions, while ratings for A-causes-C were weaker in the BC–ABC than in the
ABC condition. This pattern suggests that the participants in the BC–ABC condition were more likely
to have induced the causal chain than those in the ABC condition, another signature of causal
imprinting.

Finally, in Experiment 4 we compared the BC–ABC condition to a new ABC–BC condition, where
participants viewed the same two blocks of data but in the reverse order. Ratings for B-causes-C were
higher in the BC–ABC condition than in the ABC–BC condition despite the fact that they observed iden-
tical B–C contingencies under identical contexts (one block without A and the other with A). This
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result demonstrates that the BC block appearing before the ABC block is critical in establishing a
strong belief in B-causes-C. Thus, causal imprinting appears to result specifically from the influence
of prior knowledge on causal inferences.
8.1. A flexible interpretations account of causal imprinting

We have argued that causal imprinting results from the tendency of learners to flexibly interpret
the data they observe based on their prior causal beliefs. This claim builds on previous work support-
ing the idea of flexible interpretations. Specifically, Luhmann and Ahn (2011) provided direct evidence
for such interpretations to account for primacy effects in the learning of single causal relations (Dennis
& Ahn, 2001; Einhorn & Hogarth, 1986; Marsh & Ahn, 2006; Yates & Curley, 1986). That is, contradic-
tory evidence was explained away while maintaining the original belief, rather than being treated as a
reason to undermine the original belief.

Applying this flexible interpretation account to the current studies, participants in the BC–ABC con-
dition who came to believe that B causes C might continue to interpret the ABC block as evidence that
B causes C, and this may slow their realization that B and C are independent, given A. This interpre-
tation effect seems especially likely in our task, given that B and C were still correlated during the
ABC block if not considering A, which is at some level consistent with the belief that B causes C. In-
deed, this evidence might have actually prevented participants from seeking alternative interpreta-
tions of the B–C contingency, such as the common cause structure.

This account is most strongly supported by the results from Experiment 4, where participants in
the ABC–BC condition viewed the exact same data as those in the BC–ABC condition, but gave lower
ratings for B-causes-C. If prior causal beliefs are used to interpret later contingencies, this is precisely
the pattern one would expect. First, for the BC–ABC condition, the belief in B-causes-C would impede
the realization that these factors are independent, as indicated in the ABC block. Second, for the ABC–
BC condition, the belief that A is the common cause of B and C would seem to inoculate learners from
making the faulty inference that B causes C based on their correlation during the BC block.14
8.2. Normative claims, Bayesian models, and causal imprinting

One of our central goals was to address whether causal imprinting is a normative, or rational re-
sponse to new evidence that conflicts with prior causal beliefs. To this end, we presented normative
Bayesian analyses of the data our participants viewed in the BC–ABC and ABC–ABC conditions. Our
analyses revealed that maintaining a somewhat higher belief in B-causes-C in the BC–ABC condition
than in the ABC–ABC condition was normative when learners are justified in remaining uncertain
about the status of A during the BC block after viewing the ABC block. Furthermore, a more pro-
nounced form of causal imprinting may be considered boundedly normative if learners were unable
to consider both possible values of A during the BC block, due to cognitive limits. Experiment 2 pro-
vided a direct test of both of these assumptions and showed that causal imprinting persisted even
when neither assumption could be validated. Participants in one of our BC–ABC conditions were told
that the BC block was identical to the ABC block. Thus, they should no longer have been uncertain
about the values of A during the BC block, nor should they have allowed their biases formed during
the BC block to influence their causal judgments. Yet, causal imprinting still occurred, suggesting that
it is a non-normative bias.

In addition to supporting our claim that causal imprinting is non-normative, there is another sense
in which our modeling analyses may be useful in interpreting our results. Specifically, one might argue
based on our results that human learning is consistent with the general Bayesian framework for causal
learning and reasoning (Griffiths & Tenenbaum, 2009), with the caveat that sometimes Bayesian infer-
ence operates in non-normative ways as well. For example, Bayesian inference may be non-normative
when learners compute posteriors using inappropriate theories or prior knowledge, as in our BC–ABC
same tokens condition from Experiment 2 (see Griffiths & Tenenbaum, 2009, p. 662). Indeed, when
14 We thank Eric–Jan Wagenmakers for pointing this out.
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allowing for such non-normative forms of Bayesian inference, our causal imprinting results are en-
tirely consistent with Bayesian inference, especially with the predictions of the bounded Bayesian
analysis (see Fig. 5).

In fact, when treated as an algorithmic-level (Marr, 1982), or descriptive processing account, the
bounded Bayesian analysis actually provides an alternative to our flexible interpretations account of
causal imprinting that we presented earlier. Specifically, the bounded Bayesian analysis suggests that
causal imprinting occurred in the BC–ABC same tokens condition because participants failed to disre-
gard their prior belief in B-causes-C, even after reading the instructions prior the to the ABC block stat-
ing the equivalence of the BC and ABC individuals. This alternative account differs from the flexible
interpretation account in that the former does not assume that leaners flexibly interpret the trials
from the ABC block. Though technically possible, we view this alternative as somewhat implausible
given that the manipulation check in Experiment 2 showed that learners did comprehend the instruc-
tions, which would have encouraged disregarding of the BC block. Furthermore, there is already evi-
dence that learners with prior beliefs about a causal relation do flexibly interpret contingency data
(Luhmann & Ahn, 2011). Nevertheless, with our current data we are unable to determine which of
the processes suggested by these accounts is more accurate given that our causal judgments were
all taken at the end of learning, whereas interpretation effects are most discernable in trial-by-trial
dynamics (e.g., Luhmann & Ahn, 2007, 2011). Future studies would benefit from examining trial-
by-trial dynamics in order to better understand the processes underlying causal imprinting effects.

8.3. Phenomenon closely related to causal imprinting

In broad strokes, the current experiments showed that people were hesitant in revising their prior
causal beliefs based on later evidence. Based on this characterization, we note that causal imprinting
relates to a number of other interesting phenomena where people exhibit difficulty in attempting to
unlearn something. This includes not only the learning of causal relations, but also of general associ-
ations and facts.

For instance, studies of conditioning have shown that animals are often slower to learn that a pre-
viously reinforced stimulus is no longer reinforced (e.g., to stop pushing a lever when it no longer pro-
duces food) than they are to learn that a previously non-reinforced stimulus is now reinforced (e.g., to
start pushing a lever when it begins to produce food; Rescorla, 2002). These findings support the more
general claim that learning rates are slower during extinction than during initial acquisition (Bush &
Mosteller, 1951; Lovejoy, 1968; Wagner, Logan, & Haberlandt, 1968). That is, unlearning seems to be
generally more difficult than learning.

As another example, studies from social psychology with humans have shown that participants
who are debriefed after an experiment persist in believing the false ideas conveyed in the experiment,
even when they were fully discredited in the debriefing (Anderson, Lepper, & Ross, 1980; Ross, Lepper,
& Hubbard, 1975). For example, participants in Ross et al. (1975) attempted to distinguish authentic
from fake suicide letters and received feedback on their performance. In fact, the experimenter deter-
mined the feedback randomly, and participants were told so in the debriefing. Nevertheless, after the
debriefing those who had received mostly positive feedback during the task rated their abilities in this
and similar tasks as higher than those who had received more negative feedback. The current studies
are similar in that they also found belief persistence despite the later evidence that invalidated the
earlier made inferences.

The resistance to unlearning is also consistent with philosophical and artificial intelligence views,
which argue for conservative belief revision (Doyle, 1992; Gärdenfors, 1992a; Harman, 1988; Quine,
1986). Though most of this work has addressed revisions of logical/deterministic predicates, similar
arguments can be applied to revisions in probabilistic causal knowledge. One argument for conserva-
tive belief revision is that keeping track of where our beliefs come from (i.e., the evidence they are
based on) is computationally expensive (Gärdenfors, 1992b), and thus, the benefits of retaining beliefs
that are not obviously contradicted by new evidence outweigh the costs of storing the sources of the
beliefs in case they come under dispute. In our experiments, participants in the BC–ABC conditions
may have stored their beliefs in B-causes-C independently from the contingency data, essentially
purging memory for individual trials in the BC block after it was complete. If so, the later evidence
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in the ABC block showing that B and C were conditionally independent should not necessarily negate
the prior belief entirely, given that one cannot refute evidence that is not remembered.

Note, however, that the previous argument does not hold for the BC–ABC same tokens condition in
Experiment 2, where the source of the original belief was re-presented (i.e., the values of A from the BC
block were revealed and presented alongside the original BC block), and yet, we also found causal
imprinting. Given this finding, perhaps causal imprinting stems from an over-generalized tendency
to avoid belief revision in the interests of conservatism.

8.4. Moderating factors for causal imprinting

We want to clarify that while causal imprinting is an apparently robust phenomenon, there are
likely to be boundary conditions on the effects we have shown in this paper. For one, we do not argue
that causal imprinting is a permanent consequence of initial learning or that learners will never dis-
miss their prior beliefs. Rather, in the current studies, we have shown that when viewing a single block
of contradicting evidence of the same length as the block of initial evidence, the initial evidence
seemed to carry more weight or have more influence, presumably due to affecting how the later evi-
dence was interpreted. However, this result does not guarantee that if the later evidence were re-
peated numerous times or given more emphasis that learners imprinted with their original belief
would not eventually dismiss that belief.

Indeed, one study found that participants in a scenario similar to the BC–ABC condition, but with
extended learning and a form of feedback, did eventually dismiss their prior belief (Taylor, 2010). Re-
cency effects are also observed in studies of category learning, where feedback about the correct cat-
egorization of an item is provided on each trial (Jones, Love, & Maddox, 2006; Jones & Sieck, 2003).
However, we do not know whether causal imprinting will spontaneously disappear in the absence
of feedback with only repeated presentations of the ABC block. Furthermore, Taylor (2010) showed
that the prior belief continued to exist at a more implicit level when measuring learners’ expectations
without referring explicitly to causal relations. Further examining the robustness of causal imprinting
and whether residual beliefs persist even after extended learning would be important in understand-
ing how we can dispel causal imprinting.

Another boundary condition on causal imprinting concerns the types of initial evidence we expect
to result in causal imprinting. We do not claim that causal imprinting always occurs when a learner
views a correlation between two events in the absence of their common cause. Instead, it should hap-
pen only when the learner firmly believes that a causal relation exists between the correlated events.
If the initial evidence is very weak or consists of very few trials, as in the 5-trial studies of Fernbach
and Sloman (2009), learners may be more willing to revise their initial beliefs based on later evidence.
In addition, the plausibility of the causal relation implied by the initial evidence may play a mediating
role. For example, if one observes that ice cream consumption and drowning rates are correlated, they
may not immediately infer that ice cream consumption causes drowning (or vice versa), given the lack
of a plausible mechanisms linking these two events. To the contrary, in these circumstances learners
may even infer the common cause despite having no direct evidence, thereby preventing the causal
imprinting effect from occurring. In general, learners with an awareness or skepticism that a common
cause may be lurking in the background may be less likely to show causal imprinting effects.

Similarly, the extent to which later evidence contradicts the initial belief may also moderate the
causal imprinting effect. For instance, in previous studies showing primacy effects in causal learning
(e.g., Dennis & Ahn, 2001; Marsh & Ahn, 2006), participants maintained their initial causal beliefs even
after viewing blatantly opposing contingencies. Such primacy effects may be less robust and enduring
than the causal imprinting, as participants in these studies were likely aware that they had to justify
these opposing contingencies. Indeed, in Fernbach and Sloman (2009), the contradictory evidence was
even more obvious than in the current study—a single trial where the cause appeared in the absence of
the effect, casting doubt on a causal relation between these factors. This direct conflict actually led to a
recency effect. In contrast to these previous studies, in the current paradigm the conflict in the later
evidence was much less obvious (i.e., the conditional independence of B and C), and some participants
may have failed to notice it entirely. Hence, our order effects may be fundamentally different and per-
haps even much more persistent, given that the form of conflicting evidence is much more subtle.
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Finally, much previous work on causal learning has shown that whether primacy or recency effects
are observed depends greatly on the specific methods used, such as presentation format, working
memory load, frequency of elicited judgments, and perhaps even the total number of trials (Fernbach
& Sloman, 2009; Glautier, 2008; Hogarth & Einhorn, 1992; Marsh & Ahn, 2006). Other factors such as
the temporal delay between causes and effects also have a notable impact on causal structure and
strength judgments (Greville & Buehner, 2010; Lagnado & Sloman, 2004, 2006; Shanks, Pearson, &
Dickinson, 1989). In light of these dependencies, we decided to prioritize ecological validity by mod-
eling our experiments after a real world scenario, the myopia scenario, while aligning with recent
work on causal structure learning where trial by trial presentation format was used (Lagnado & Slo-
man, 2004, 2006; Steyvers et al., 2003). At the same time, because previous studies have shown sub-
optimal learning of causal structures among more than two variables, we attempted to reduce
working memory load by specifying possible causal directions, and allowing participants to re-view
all trials within each block. With this presentation format, we obtained robust causal imprinting effect
across Experiment 1–4, with both structure and strength judgments, and using numerous different
control conditions. Yet, the amount or strength of causal imprinting may vary when the details of
these methods change. In addition, by manipulating presentation orders at the block level rather than
trial level, our presentation format does not allow us to infer whether causal imprinting operates at a
trial-by-trial level or at a more global level, such as block-by-block level (see Greville & Buehner, 2010
for evidence of global processing).

Future research can examine other potential boundary conditions for causal imprinting. Such re-
search can also shed light on implementing intervention techniques for overcoming or preventing
causal imprinting. For example, a domain where it is critical to avoid causal reasoning biases is legal
reasoning. Order effects may occur in courtrooms if some initial evidence is presented in favor of a
ruling, which then biases the jurors’ and judge’s interpretations of later evidence (Lagnado, 2011).
Such examples underscore the importance of research on human reasoning biases and ways to correct
them.
9. Conclusions

In four experiments, we provided evidence for causal imprinting during causal structure learning,
whereby participants failed to revise their prior belief in a causal relation based on conflicting evi-
dence. Causal imprinting occurred using a variety of dependent measures and control conditions,
and also appeared in cases where it was non-normative. We argue that causal imprinting occurs
due to the influence of prior knowledge on how people interpret later contingency evidence, which
slows the process of belief revision. Future studies are needed to explore the scope of causal imprint-
ing and to explore the conditions that might lead people to revise, rather than persist in their initial
causal beliefs.
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Appendix A

Here we present the results from several additional normative analyses, including those using a re-
stricted range for the b parameters, complexity and simplicity priors, and an alternative functional
form. First, we present our analyses when restricting the range of the b parameters to [0,0.1], in light
of recent evidence showing that people tend to assume that background causes are weak (Lu et al.,
2008).

As shown in Table A1, the main difference in these analyses and those in the main text is that the
posteriors for the common cause decrease slightly overall, while the posteriors for the structure with
all three relations increase slightly. Crucially, the relative patterns remain the same, and thus, the pos-



Table A1
Bayesian analyses with restricted range for the b parameter. Bolded values are maxima.

Posterior probabilities with b parameters sampled from [0,0.1]
ABC–ABC (No missing values) 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.29
BC–ABC (Reinterpretation) 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.29
BC–ABC (Fully Bayesian) 0.00 0.00 0.00 0.27 0.00 0.00 0.02 0.71
BC–ABC (Bounded Bayesian) 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.92

Table A2
Bayesian analyses with alternative priors. Bolded values are maxima.

Posterior probabilities with h = 0.5 (preference for complex)
ABC–ABC (No missing values) 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.43
BC–ABC (Reinterpretation) 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.43
BC–ABC (Fully Bayesian) 0.00 0.00 0.00 0.39 0.00 0.00 0.02 0.58
BC–ABC (Bounded Bayesian) 0.00 0.00 0.00 0.01 0.00 0.01 0.10 0.88

Posterior probabilities with h = 20 (preference for simple)
ABC–ABC (No missing values) 0.00 0.02 0.01 0.98 0.00 0.00 0.00 0.02
BC–ABC (Reinterpretation) 0.00 0.02 0.01 0.98 0.00 0.00 0.00 0.02
BC–ABC (Fully Bayesian) 0.00 0.02 0.01 0.91 0.00 0.00 0.05 0.03
BC–ABC (Bounded Bayesian) 0.01 0.02 0.02 0.04 0.22 0.05 0.53 0.12

Table A3
Bayesian analyses with a linear method for combining multiple causes. Bolded values are maxima.

Posterior probabilities using the linear method of combining multiple causes
ABC–ABC (No missing values) 0.00 0.00 0.00 0.86 0.00 0.00 0.02 0.12
BC–ABC (Reinterpretation) 0.00 0.00 0.00 0.86 0.00 0.00 0.02 0.12
BC–ABC (Fully Bayesian) 0.00 0.00 0.00 0.77 0.00 0.00 0.15 0.07
BC–ABC (Bounded Bayesian) 0.00 0.00 0.00 0.03 0.00 0.00 0.85 0.12
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sible accounts of causal imprinting based on the fully Bayesian and bounded Bayesian analyses remain
valid.

Second, we present our analyses when incorporating prior distributions over hypotheses to reflect
a preference for simpler or more complex causal structures. We used the method from Fernbach and
Sloman (2009), where the priors were determined using the function h�l(h)/Rh�l(h), where l(h) is the
number of causal links in hypothesis h, and the value of h varies to determine the preference for sim-
pler hypotheses with few links (values of h greater than 1) or more complex hypotheses with many
links (values of h between 0 and 1).

We considered 0.5 and 20 as values of h to demonstrate that even at these relative extremes the
normative analyses leads to analogous predictions for B-causes-C relative to the analyses in the main
text. As shown in Table A2, for both simplicity and complexity preferences, the fully Bayesian analysis
and bonded Bayesian analysis lead to greater belief in structures with B-causes-C than the other two
analyses. That is, these analyses continue to show a trend toward causal imprinting relative to the
ABC–ABC analysis and the reinterpretation analysis of the BC–ABC condition.

Third, we present analyses using a linear function for combining the influence of multiple causes on
a single effect (e.g., as in A-causes-C and B-causes-C both leading to effect C). The following linear
function can be substituted for Eq. (3):
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c2causese

mcecpresent ðA:1Þ
The linear method is not as often used in Bayesian modeling of causal inference, because restric-
tions are required when choosing the b and m parameters. Specifically, the b and m parameters for
a given effect must not sum to a value greater than 1 (e.g., when C is the effect, then bC + mBC + mAC

must not exceed 1). Otherwise, the ‘‘probability’’ of the effect would exceed 1, which is invalid. In
our explorations of the linear method, when the sum of the randomly sampled b and m parameters
for a given effect exceeded 1, we normalized these parameters so that summed to 1.

The results from these analyses are presented in Table A3. As can been seen, the common cause struc-
ture receives the largest posterior for all analyses but the bounded Bayesian analysis, where the poster-
ior for the common cause drops to near zero. Overall, these results are very similar to those from the
noisy-OR method. One unique result using the linear method is that the structure with all three relations
receives a lower posterior than using the noisy-OR function. Indeed, the causal chain receives the high-
est posterior according to the bounded Bayesian analysis, rather than the full structure. Crucially, how-
ever, this does not change whether and under what conditions these analyses mimic causal imprinting.
Just as for the noisy-OR method, a small trend toward causal imprinting is present for the fully Bayesian
analysis, and a much larger trend is present for the bounded Bayesian analysis.
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